您好我正在使用OCR阅读应用程序,我已成功使用AVFoundation框架捕获卡片图像。
下一步,我需要找出卡片的边缘,以便我可以从主要捕获的图像中裁剪出卡片图像。之后我可以将它发送到OCR引擎进行处理。
现在的主要问题是找到卡片的边缘。我使用下面的代码(取自另一个开源项目)使用OpenCV用于此目的。如果卡是纯矩形卡或纸,它工作正常。但是当我使用圆角卡(例如驾驶执照)时,它无法检测到。另外我在OpenCV上没有太多的专业知识,任何人都可以帮我解决这个问题吗?
- (void)detectEdges
{
cv::Mat original = [MAOpenCV cvMatFromUIImage:_adjustedImage];
CGSize targetSize = _sourceImageView.contentSize;
cv::resize(original, original, cvSize(targetSize.width, targetSize.height));
cv::vector<cv::vector<cv::Point>>squares;
cv::vector<cv::Point> largest_square;
find_squares(original, squares);
find_largest_square(squares, largest_square);
if (largest_square.size() == 4)
{
// Manually sorting points, needs major improvement. Sorry.
NSMutableArray *points = [NSMutableArray array];
NSMutableDictionary *sortedPoints = [NSMutableDictionary dictionary];
for (int i = 0; i < 4; i++)
{
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:[NSValue valueWithCGPoint:CGPointMake(largest_square[i].x, largest_square[i].y)], @"point" , [NSNumber numberWithInt:(largest_square[i].x + largest_square[i].y)], @"value", nil];
[points addObject:dict];
}
int min = [[points valueForKeyPath:@"@min.value"] intValue];
int max = [[points valueForKeyPath:@"@max.value"] intValue];
int minIndex;
int maxIndex;
int missingIndexOne;
int missingIndexTwo;
for (int i = 0; i < 4; i++)
{
NSDictionary *dict = [points objectAtIndex:i];
if ([[dict objectForKey:@"value"] intValue] == min)
{
[sortedPoints setObject:[dict objectForKey:@"point"] forKey:@"0"];
minIndex = i;
continue;
}
if ([[dict objectForKey:@"value"] intValue] == max)
{
[sortedPoints setObject:[dict objectForKey:@"point"] forKey:@"2"];
maxIndex = i;
continue;
}
NSLog(@"MSSSING %i", i);
missingIndexOne = i;
}
for (int i = 0; i < 4; i++)
{
if (missingIndexOne != i && minIndex != i && maxIndex != i)
{
missingIndexTwo = i;
}
}
if (largest_square[missingIndexOne].x < largest_square[missingIndexTwo].x)
{
//2nd Point Found
[sortedPoints setObject:[[points objectAtIndex:missingIndexOne] objectForKey:@"point"] forKey:@"3"];
[sortedPoints setObject:[[points objectAtIndex:missingIndexTwo] objectForKey:@"point"] forKey:@"1"];
}
else
{
//4rd Point Found
[sortedPoints setObject:[[points objectAtIndex:missingIndexOne] objectForKey:@"point"] forKey:@"1"];
[sortedPoints setObject:[[points objectAtIndex:missingIndexTwo] objectForKey:@"point"] forKey:@"3"];
}
[_adjustRect topLeftCornerToCGPoint:[(NSValue *)[sortedPoints objectForKey:@"0"] CGPointValue]];
[_adjustRect topRightCornerToCGPoint:[(NSValue *)[sortedPoints objectForKey:@"1"] CGPointValue]];
[_adjustRect bottomRightCornerToCGPoint:[(NSValue *)[sortedPoints objectForKey:@"2"] CGPointValue]];
[_adjustRect bottomLeftCornerToCGPoint:[(NSValue *)[sortedPoints objectForKey:@"3"] CGPointValue]];
}
original.release();
}
答案 0 :(得分:14)
这种天真的实现基于OpenCV示例目录中提供的 squares.cpp 中演示的一些技术。以下帖子还讨论了类似的应用程序:
@John,下面的代码已使用您提供的示例图像和我创建的另一个图片进行了测试:
处理管道以findSquares()
开头,这是OpenCV的 squares.cpp 演示实现的相同功能的简化。此函数将输入图像转换为灰度并应用模糊以改善边缘检测(Canny):
边缘检测很好,但是需要进行形态学操作(扩张)来连接附近的线:
之后我们尝试找到轮廓(边缘)并从中组合方块。如果我们试图在输入图像上绘制所有检测到的正方形,那么结果就是:
它看起来不错,但由于检测到的方块太多,它并不是我们正在寻找的。然而,最大的方块实际上是卡片,所以从这里开始它非常简单,我们只是弄清楚哪个方块是最大的。这正是findLargestSquare()
所做的。
一旦我们知道最大的正方形,我们只需在正方形的角落处绘制红点以进行调试:
正如您所看到的,对于大多数用途,检测并不完美,但似乎足够好。这不是一个强大的解决方案,我只想分享一种方法来解决问题。我确信还有其他方法可以解决这个问题,这对你来说可能更有意思。祝你好运!
#include <iostream>
#include <cmath>
#include <vector>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/imgproc/imgproc_c.h>
/* angle: finds a cosine of angle between vectors, from pt0->pt1 and from pt0->pt2
*/
double angle(cv::Point pt1, cv::Point pt2, cv::Point pt0)
{
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
/* findSquares: returns sequence of squares detected on the image
*/
void findSquares(const cv::Mat& src, std::vector<std::vector<cv::Point> >& squares)
{
cv::Mat src_gray;
cv::cvtColor(src, src_gray, cv::COLOR_BGR2GRAY);
// Blur helps to decrease the amount of detected edges
cv::Mat filtered;
cv::blur(src_gray, filtered, cv::Size(3, 3));
cv::imwrite("out_blur.jpg", filtered);
// Detect edges
cv::Mat edges;
int thresh = 128;
cv::Canny(filtered, edges, thresh, thresh*2, 3);
cv::imwrite("out_edges.jpg", edges);
// Dilate helps to connect nearby line segments
cv::Mat dilated_edges;
cv::dilate(edges, dilated_edges, cv::Mat(), cv::Point(-1, -1), 2, 1, 1); // default 3x3 kernel
cv::imwrite("out_dilated.jpg", dilated_edges);
// Find contours and store them in a list
std::vector<std::vector<cv::Point> > contours;
cv::findContours(dilated_edges, contours, cv::RETR_LIST, cv::CHAIN_APPROX_SIMPLE);
// Test contours and assemble squares out of them
std::vector<cv::Point> approx;
for (size_t i = 0; i < contours.size(); i++)
{
// approximate contour with accuracy proportional to the contour perimeter
cv::approxPolyDP(cv::Mat(contours[i]), approx, cv::arcLength(cv::Mat(contours[i]), true)*0.02, true);
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if (approx.size() == 4 && std::fabs(contourArea(cv::Mat(approx))) > 1000 &&
cv::isContourConvex(cv::Mat(approx)))
{
double maxCosine = 0;
for (int j = 2; j < 5; j++)
{
double cosine = std::fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
if (maxCosine < 0.3)
squares.push_back(approx);
}
}
}
/* findLargestSquare: find the largest square within a set of squares
*/
void findLargestSquare(const std::vector<std::vector<cv::Point> >& squares,
std::vector<cv::Point>& biggest_square)
{
if (!squares.size())
{
std::cout << "findLargestSquare !!! No squares detect, nothing to do." << std::endl;
return;
}
int max_width = 0;
int max_height = 0;
int max_square_idx = 0;
for (size_t i = 0; i < squares.size(); i++)
{
// Convert a set of 4 unordered Points into a meaningful cv::Rect structure.
cv::Rect rectangle = cv::boundingRect(cv::Mat(squares[i]));
//std::cout << "find_largest_square: #" << i << " rectangle x:" << rectangle.x << " y:" << rectangle.y << " " << rectangle.width << "x" << rectangle.height << endl;
// Store the index position of the biggest square found
if ((rectangle.width >= max_width) && (rectangle.height >= max_height))
{
max_width = rectangle.width;
max_height = rectangle.height;
max_square_idx = i;
}
}
biggest_square = squares[max_square_idx];
}
int main()
{
cv::Mat src = cv::imread("cc.png");
if (src.empty())
{
std::cout << "!!! Failed to open image" << std::endl;
return -1;
}
std::vector<std::vector<cv::Point> > squares;
findSquares(src, squares);
// Draw all detected squares
cv::Mat src_squares = src.clone();
for (size_t i = 0; i < squares.size(); i++)
{
const cv::Point* p = &squares[i][0];
int n = (int)squares[i].size();
cv::polylines(src_squares, &p, &n, 1, true, cv::Scalar(0, 255, 0), 2, CV_AA);
}
cv::imwrite("out_squares.jpg", src_squares);
cv::imshow("Squares", src_squares);
std::vector<cv::Point> largest_square;
findLargestSquare(squares, largest_square);
// Draw circles at the corners
for (size_t i = 0; i < largest_square.size(); i++ )
cv::circle(src, largest_square[i], 4, cv::Scalar(0, 0, 255), cv::FILLED);
cv::imwrite("out_corners.jpg", src);
cv::imshow("Corners", src);
cv::waitKey(0);
return 0;
}
答案 1 :(得分:2)
而不是“纯”的矩形斑点,试着去找几乎是矩形的斑点。
1-高斯模糊
2-灰度和canny边缘检测
3-提取图像中的所有斑点(轮廓)并过滤掉小图像。为此,你将使用findcontours和contourarea函数。
4-使用moments,过滤掉非矩形的。首先,您需要检查矩形对象的瞬间。你可以自己做或谷歌。然后列出那些时刻并找到对象之间的相似性,创建您的过滤器。
Ex:经过测试,说你发现m30的中心力矩类似于矩形物体 - &gt;过滤掉m30不准确的物体。
答案 2 :(得分:2)
我知道这篇文章可能为时已晚,但我发布的内容可以帮助其他人。
iOS Core Image框架已经有了一个很好的工具来检测矩形(自iOS 5以来),面部,QR码甚至静止图像中包含文本的区域等功能。如果您查看CIDetector class,就会找到所需内容。我也将它用于OCR应用程序,与使用OpenCV相比,它非常简单且非常可靠(我对OpenCV不太好,但CIDetector使用3-5行代码可以提供更好的结果)。
答案 3 :(得分:0)
我不知道它是否是一个选项,但你可以让用户定义它的边缘而不是尝试以编程方式进行。