运行下面的代码在NVIDIA Visual Profiler的全局内存中写入1 GB,我得到:
- 100%的存储效率
- 69.4%(128.6 GB / s)DRAM利用率
- 18.3%的总重播开销
- 18.3%的全局内存重放开销
内存写入应该是合并的,内核中没有分歧,所以问题是全局内存重放开销来自何处?我在Ubuntu 13.04上运行它,使用的是nvidia-cuda-toolkit版本5.0.35-4ubuntu1。
#include <cuda.h>
#include <unistd.h>
#include <getopt.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <stdint.h>
#include <ctype.h>
#include <sched.h>
#include <assert.h>
static void
HandleError( cudaError_t err, const char *file, int line )
{
if (err != cudaSuccess) {
printf( "%s in %s at line %d\n", cudaGetErrorString(err), file, line);
exit( EXIT_FAILURE );
}
}
#define HANDLE_ERROR(err) (HandleError(err, __FILE__, __LINE__))
// Global memory writes
__global__ void
kernel_write(uint32_t *start, uint32_t entries)
{
uint32_t tid = threadIdx.x + blockIdx.x*blockDim.x;
while (tid < entries) {
start[tid] = tid;
tid += blockDim.x*gridDim.x;
}
}
int main(int argc, char *argv[])
{
uint32_t *gpu_mem; // Memory pointer
uint32_t n_blocks = 256; // Blocks per grid
uint32_t n_threads = 192; // Threads per block
uint32_t n_bytes = 1073741824; // Transfer size (1 GB)
float elapsedTime; // Elapsed write time
// Allocate 1 GB of memory on the device
HANDLE_ERROR( cudaMalloc((void **)&gpu_mem, n_bytes) );
// Create events
cudaEvent_t start, stop;
HANDLE_ERROR( cudaEventCreate(&start) );
HANDLE_ERROR( cudaEventCreate(&stop) );
// Write to global memory
HANDLE_ERROR( cudaEventRecord(start, 0) );
kernel_write<<<n_blocks, n_threads>>>(gpu_mem, n_bytes/4);
HANDLE_ERROR( cudaGetLastError() );
HANDLE_ERROR( cudaEventRecord(stop, 0) );
HANDLE_ERROR( cudaEventSynchronize(stop) );
HANDLE_ERROR( cudaEventElapsedTime(&elapsedTime, start, stop) );
// Report exchange time
printf("#Delay(ms) BW(GB/s)\n");
printf("%10.6f %10.6f\n", elapsedTime, 1e-6*n_bytes/elapsedTime);
// Destroy events
HANDLE_ERROR( cudaEventDestroy(start) );
HANDLE_ERROR( cudaEventDestroy(stop) );
// Free memory
HANDLE_ERROR( cudaFree(gpu_mem) );
return 0;
}
答案 0 :(得分:1)
nvprof探查器和API探查器给出了不同的结果:
$ nvprof --events gst_request ./app
======== NVPROF is profiling app...
======== Command: app
#Delay(ms) BW(GB/s)
13.345920 80.454690
======== Profiling result:
Invocations Avg Min Max Event Name
Device 0
Kernel: kernel_write(unsigned int*, unsigned int)
1 8388608 8388608 8388608 gst_request
$ nvprof --events global_store_transaction ./app
======== NVPROF is profiling app...
======== Command: app
#Delay(ms) BW(GB/s)
9.469216 113.392892
======== Profiling result:
Invocations Avg Min Max Event Name
Device 0
Kernel: kernel_write(unsigned int*, unsigned int)
1 8257560 8257560 8257560 global_store_transaction
我的印象是global_store_transation不能低于gst_request。这里发生了什么?我不能在同一个命令中询问这两个事件,所以我必须运行两个单独的命令。这可能是问题吗?
奇怪的是,API分析器显示了完美合并的不同结果。这是输出,我必须运行两次以获得正确的计数器:
$ cat config.txt
inst_issued
inst_executed
gst_request
$ COMPUTE_PROFILE=1 COMPUTE_PROFILE_CSV=1 COMPUTE_PROFILE_LOG=log.csv COMPUTE_PROFILE_CONFIG=config.txt ./app
$ cat log.csv
# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 GeForce GTX 580
# CUDA_CONTEXT 1
# CUDA_PROFILE_CSV 1
# TIMESTAMPFACTOR fffff67eaca946b8
method,gputime,cputime,occupancy,inst_issued,inst_executed,gst_request,gld_request
_Z12kernel_writePjj,7771.776,7806.000,1.000,4737053,3900426,557058,0
$ cat config2.txt
global_store_transaction
$ COMPUTE_PROFILE=1 COMPUTE_PROFILE_CSV=1 COMPUTE_PROFILE_LOG=log2.csv COMPUTE_PROFILE_CONFIG=config2.txt ./app
$ cat log2.csv
# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 GeForce GTX 580
# CUDA_CONTEXT 1
# CUDA_PROFILE_CSV 1
# TIMESTAMPFACTOR fffff67eea92d0e8
method,gputime,cputime,occupancy,global_store_transaction
_Z12kernel_writePjj,7807.584,7831.000,1.000,557058
这里gst_request和global_store_transactions完全相同,显示出完美的合并效果。哪一个是正确的(nvprof或API分析器)?为什么NVIDIA Visual Profiler说我有非合并写?仍然有重要的指令重播,我不知道他们来自哪里:(
有什么想法吗?我不认为这是硬件故障,因为我在同一台机器上有两块板,两者都表现出相同的行为。