我正在尝试在java中运行map / reducer。以下是我的文件
WordCount.java
package counter;
public class WordCount extends Configured implements Tool {
public int run(String[] arg0) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path("counterinput"));
// Erase previous run output (if any)
FileSystem.get(conf).delete(new Path("counteroutput"), true);
FileOutputFormat.setOutputPath(job, new Path("counteroutput"));
job.waitForCompletion(true);
return 0;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new WordCount(), args);
System.exit(res);
}
}
WordCountMapper.java
public class WordCountMapper extends
Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<Text,IntWritable> output, Reporter reporter)
throws IOException, InterruptedException {
System.out.println("hi");
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}
WordCountReducer.java
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text,IntWritable> output, Reporter reporter) throws IOException, InterruptedException {
System.out.println("hello");
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
我收到以下错误
13/06/23 23:13:25 INFO jvm.JvmMetrics: Initializing JVM Metrics with
processName=JobTracker, sessionId=
13/06/23 23:13:25 WARN mapred.JobClient: Use GenericOptionsParser for parsing the
arguments. Applications should implement Tool for the same.
13/06/23 23:13:26 INFO input.FileInputFormat: Total input paths to process : 1
13/06/23 23:13:26 INFO mapred.JobClient: Running job: job_local_0001
13/06/23 23:13:26 INFO input.FileInputFormat: Total input paths to process : 1
13/06/23 23:13:26 INFO mapred.MapTask: io.sort.mb = 100
13/06/23 23:13:26 INFO mapred.MapTask: data buffer = 79691776/99614720
13/06/23 23:13:26 INFO mapred.MapTask: record buffer = 262144/327680
13/06/23 23:13:26 WARN mapred.LocalJobRunner: job_local_0001
java.io.IOException: Type mismatch in key from map: expected org.apache.hadoop.io.Text,
recieved org.apache.hadoop.io.LongWritable
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.collect(MapTask.java:845)
at org.apache.hadoop.mapred.MapTask$NewOutputCollector.write(MapTask.java:541)
at org.
apache.hadoop.mapreduce.TaskInputOutputContext.write(TaskInputOutputContext.java:80)
at org.apache.hadoop.mapreduce.Mapper.map(Mapper.java:124)
at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:144)
at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:621)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:305)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:177)
13/06/23 23:13:27 INFO mapred.JobClient: map 0% reduce 0%
13/06/23 23:13:27 INFO mapred.JobClient: Job complete: job_local_0001
13/06/23 23:13:27 INFO mapred.JobClient: Counters: 0
我认为它无法找到Mapper和reducer类。我在主类中编写了代码, 它正在获取默认的Mapper和reducer类。
答案 0 :(得分:40)
在代码中添加以下两行:
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
您正在使用TextOutputFormat
默认情况下会发出LongWritable键和Text值,但您将Text作为键发出,IntWritable作为值发出。你需要把它告诉famework。
HTH
答案 1 :(得分:6)
这可能不是你的问题,但我曾经有过这个愚蠢的问题。确保您没有混合旧库和新库,即mapred vs mapreduce。在地图上注释@Overide并减少方法。如果您发现错误,则表示您没有正确覆盖这些方法。
答案 2 :(得分:4)
由于我的代码中设置了不正确的Mapper类(错误:),我得到了类似的异常堆栈跟踪。)
job.setMapperClass(Mapper.class) // Set to org.apache.hadoop.mapreduce.Mapper due to type
请注意,我错误地使用了mapreduce包中的Mapper类,我将其更改为自定义映射器类:
job.setMapperClass(LogProcMapperClass.class) // LogProcMapperClass is my custom mapper.
我更正了mapper类后解决了异常。
答案 3 :(得分:0)
从代码中删除它解决了问题
super.map(key, value, context);