如何通过C中的PID监视事件的外部进程?

时间:2013-06-23 00:58:36

标签: c linux process signals pid

是否有任何具有某些功能的库允许人们通过其pid_t监视事件的外部进程?我的意思是,监视外部进程是否已退出,或者是否已创建一个或多个子进程(使用fork),或者它是否已成为另一个可执行映像(通过exec或{{1函数系列调用)或Unix信号是否已传递给它。

修改

我需要一些不会干扰正在监控的程序执行的东西。因此,我不应该使用posix_spawn,因为它会在发出某些信号时停止正在监视的进程,并且只要发生这种情况就必须恢复进程。

4 个答案:

答案 0 :(得分:17)

使用捕获fork()的预加载库运行目标二进制文件。只要所有子进程也使用预加载库,您将看到所有本地子进程,无论执行方式如何。

以下是一个示例实现。

首先,forkmonitor.h头文件。它定义了从预加载库传递到监视进程的消息:

#ifndef   FORKMONITOR_H
#define   FORKMONITOR_H

#define   FORKMONITOR_ENVNAME "FORKMONITOR_SOCKET"

#ifndef   UNIX_PATH_MAX
#define   UNIX_PATH_MAX 108
#endif

#define TYPE_EXEC       1   /* When a binary is executed */
#define TYPE_DONE       2   /* exit() or return from main() */
#define TYPE_FORK       3
#define TYPE_VFORK      4
#define TYPE_EXIT       5   /* _exit() or _Exit() */
#define TYPE_ABORT      6   /* abort() */

struct message {
    pid_t          pid;     /* Process ID */
    pid_t          ppid;    /* Parent process ID */
    pid_t          sid;     /* Session ID */
    pid_t          pgid;    /* Process group ID */
    uid_t          uid;     /* Real user ID */
    gid_t          gid;     /* Real group ID */
    uid_t          euid;    /* Effective user ID */
    gid_t          egid;    /* Effective group ID */
    unsigned short len;     /* Length of data[] */
    unsigned char  type;    /* One of the TYPE_ constants */
    char           data[0]; /* Optional payload, possibly longer */
};

#endif /* FORKMONITOR_H */

FORKMONITOR_SOCKET环境变量(由上面的FORKMONITOR_ENVNAME宏命名)指定监视进程的Unix域数据报套接字。如果未定义或为空,则不会发送监控消息。

这是图书馆本身libforkmonitor.c。 请注意,我简化了代码,省略了多线程初始化(因为库很少会调用任何截获的函数,甚至很少从多个线程执行)。最好使用原子内置函数(__sync_bool_compare_and_swap())来更新函数指针,使用原子获取器(__sync_fetch_and_or(,0))来检索函数指针,以避免任何库问题。 (这对多线程程序来说非常安全,因为指针只会在main()执行之前被修改。)

#define  _POSIX_C_SOURCE 200809L
#define  _GNU_SOURCE
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/un.h>
#include <dlfcn.h>
#include <limits.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include "forkmonitor.h"

static pid_t (*actual_fork)(void)  = NULL;
static pid_t (*actual_vfork)(void) = NULL;
static void  (*actual_abort)(void) = NULL;
static void  (*actual__exit)(int)  = NULL;
static void  (*actual__Exit)(int)  = NULL;
static int     commfd = -1;

#define MINIMUM_COMMFD  31

static void notify(const int type, struct message *const msg, const size_t extra)
{
    const int    saved_errno = errno;

    msg->pid  = getpid();
    msg->ppid = getppid();
    msg->sid  = getsid(0);
    msg->pgid = getpgrp();
    msg->uid  = getuid();
    msg->gid  = getgid();
    msg->euid = geteuid();
    msg->egid = getegid();
    msg->len  = extra;
    msg->type = type;

    /* Since we don't have any method of dealing with send() errors
     * or partial send()s, we just fire one off and hope for the best. */
    send(commfd, msg, sizeof (struct message) + extra, MSG_EOR | MSG_NOSIGNAL);

    errno = saved_errno;
}

void libforkmonitor_init(void) __attribute__((constructor));
void libforkmonitor_init(void)
{
    const int saved_errno = errno;
    int       result;

    /* Save the actual fork() call pointer. */
    if (!actual_fork)
        *(void **)&actual_fork = dlsym(RTLD_NEXT, "fork");

    /* Save the actual vfork() call pointer. */
    if (!actual_vfork)
        *(void **)&actual_vfork = dlsym(RTLD_NEXT, "vfork");

    /* Save the actual abort() call pointer. */
    if (!actual_abort)
        *(void **)&actual_abort = dlsym(RTLD_NEXT, "abort");

    /* Save the actual _exit() call pointer. */
    if (!actual__exit)
        *(void **)&actual__exit = dlsym(RTLD_NEXT, "_exit");
    if (!actual__exit)
        *(void **)&actual__exit = dlsym(RTLD_NEXT, "_Exit");

    /* Save the actual abort() call pointer. */
    if (!actual__Exit)
        *(void **)&actual__Exit = dlsym(RTLD_NEXT, "_Exit");
    if (!actual__Exit)
        *(void **)&actual__Exit = dlsym(RTLD_NEXT, "_exit");

    /* Open an Unix domain datagram socket to the observer. */
    if (commfd == -1) {
        const char *address;

        /* Connect to where? */
        address = getenv(FORKMONITOR_ENVNAME);
        if (address && *address) {
            struct sockaddr_un addr;

            memset(&addr, 0, sizeof addr);
            addr.sun_family = AF_UNIX;
            strncpy(addr.sun_path, address, sizeof addr.sun_path - 1);

            /* Create and bind the socket. */
            commfd = socket(AF_UNIX, SOCK_DGRAM, 0);
            if (commfd != -1) {
                if (connect(commfd, (const struct sockaddr *)&addr, sizeof (addr)) == -1) {
                    /* Failed. Close the socket. */
                    do {
                        result = close(commfd);
                    } while (result == -1 && errno == EINTR);
                    commfd = -1;
                }
            }

            /* Move commfd to a high descriptor, to avoid complications. */
            if (commfd != -1 && commfd < MINIMUM_COMMFD) {
                const int newfd = MINIMUM_COMMFD;
                do {
                    result = dup2(commfd, newfd);
                } while (result == -1 && errno == EINTR);
                if (!result) {
                    do {
                        result = close(commfd);
                    } while (result == -1 && errno == EINTR);
                    commfd = newfd;
                }
            }
        }
    }

    /* Send an init message, listing the executable path. */
    if (commfd != -1) {
        size_t          len = 128;
        struct message *msg = NULL;

        while (1) {
            ssize_t n;

            free(msg);
            msg = malloc(sizeof (struct message) + len);
            if (!msg) {
                len = 0;
                break;
            }

            n = readlink("/proc/self/exe", msg->data, len);
            if (n > (ssize_t)0 && (size_t)n < len) {
                msg->data[n] = '\0';
                len = n + 1;
                break;
            }

            len = (3 * len) / 2;
            if (len >= 65536U) {
                free(msg);
                msg = NULL;
                len = 0;
                break;
            }
        }

        if (len > 0) {
            /* INIT message with executable name */
            notify(TYPE_EXEC, msg, len);
            free(msg);
        } else {
            /* INIT message without executable name */
            struct message msg2;
            notify(TYPE_EXEC, &msg2, sizeof msg2);
        }
    }

    /* Restore errno. */
    errno = saved_errno;
}

void libforkmonitor_done(void) __attribute__((destructor));
void libforkmonitor_done(void)
{
    const int saved_errno = errno;
    int       result;

    /* Send an exit message, no data. */
    if (commfd != -1) {
        struct message msg;
        notify(TYPE_DONE, &msg, sizeof msg);
    }

    /* If commfd is open, close it. */
    if (commfd != -1) {
        do {
            result = close(commfd);
        } while (result == -1 && errno == EINTR);
    }

    /* Restore errno. */
    errno = saved_errno;
}

/*
 * Hooked C library functions.
*/

pid_t fork(void)
{
    pid_t result;

    if (!actual_fork) {
        const int saved_errno = errno;

        *(void **)&actual_fork = dlsym(RTLD_NEXT, "fork");
        if (!actual_fork) {
            errno = EAGAIN;
            return (pid_t)-1;
        }

        errno = saved_errno;
    }

    result = actual_fork();
    if (!result && commfd != -1) {
        struct message msg;
        notify(TYPE_FORK, &msg, sizeof msg);
    }

    return result;
}

pid_t vfork(void)
{
    pid_t result;

    if (!actual_vfork) {
        const int saved_errno = errno;

        *(void **)&actual_vfork = dlsym(RTLD_NEXT, "vfork");
        if (!actual_vfork) {
            errno = EAGAIN;
            return (pid_t)-1;
        }

        errno = saved_errno;
    }

    result = actual_vfork();
    if (!result && commfd != -1) {
        struct message msg;
        notify(TYPE_VFORK, &msg, sizeof msg);
    }

    return result;
}

void _exit(const int code)
{
    if (!actual__exit) {
        const int saved_errno = errno;
        *(void **)&actual__exit = dlsym(RTLD_NEXT, "_exit");
        if (!actual__exit)
            *(void **)&actual__exit = dlsym(RTLD_NEXT, "_Exit");
        errno = saved_errno;
    }

    if (commfd != -1) {
        struct {
            struct message  msg;
            int             extra;
        } data;

        memcpy(&data.msg.data[0], &code, sizeof code);
        notify(TYPE_EXIT, &(data.msg), sizeof (struct message) + sizeof (int));
    }

    if (actual__exit)
        actual__exit(code);

    exit(code);
}

void _Exit(const int code)
{
    if (!actual__Exit) {
        const int saved_errno = errno;
        *(void **)&actual__Exit = dlsym(RTLD_NEXT, "_Exit");
        if (!actual__Exit)
            *(void **)&actual__Exit = dlsym(RTLD_NEXT, "_exit");
        errno = saved_errno;
    }

    if (commfd != -1) {
        struct {
            struct message  msg;
            int             extra;
        } data;

        memcpy(&data.msg.data[0], &code, sizeof code);
        notify(TYPE_EXIT, &(data.msg), sizeof (struct message) + sizeof (int));
    }

    if (actual__Exit)
        actual__Exit(code);

    exit(code);
}

void abort(void)
{
    if (!actual_abort) {
        const int saved_errno = errno;
        *(void **)&actual_abort = dlsym(RTLD_NEXT, "abort");
        errno = saved_errno;
    }

    if (commfd != -1) {
        struct message msg;
        notify(TYPE_ABORT, &msg, sizeof msg);
    }

    actual_abort();
    exit(127);
}

在调用进程libforkmonitor_init()之前,运行时链接程序会自动调用main()函数,并在进程从libforkmonitor_done()返回时调用main()或调用{{ 1}}。

exit()打开监控进程的Unix域数据报套接字,并将其凭据和路径发送到当前可执行文件。每个子进程(只要预加载库仍然加载)在加载后执行它,因此不需要捕获libforkmonitor_init()exec*()或'popen()`等函数所有

拦截了C库函数posix_spawn*()fork()。需要这些拦截来捕获原始程序在不执行任何其他二进制文件的情况下分叉创建从属进程的情况。 (至少GNU C库在内部使用vfork(),因此它们也会捕获fork()popen()等。)

此外,C库函数posix_spawn()_exit()_Exit()也被截获。我添加了这些因为一些二进制文件,特别是Dash,喜欢使用abort(),我认为捕获所有形式的正常出口会很好。 (但是,由于信号没有检测到死亡;如果二进制文件执行另一个二进制文件,您将只获得新的EXEC消息。请注意进程和父进程ID。)

这是一个简单的监控程序,_exit()

forkmonitor.c

它需要一个命令行参数,即Unix域套接字地址。它应该是一个绝对的文件系统路径。

您可以通过#define _POSIX_C_SOURCE 200809L #include <unistd.h> #include <stdlib.h> #include <sys/socket.h> #include <sys/un.h> #include <signal.h> #include <pwd.h> #include <grp.h> #include <string.h> #include <stdio.h> #include <errno.h> #include "forkmonitor.h" static volatile sig_atomic_t done = 0; static void done_handler(const int signum) { if (!done) done = signum; } static int catch_done(const int signum) { struct sigaction act; sigemptyset(&act.sa_mask); act.sa_handler = done_handler; act.sa_flags = 0; if (sigaction(signum, &act, NULL) == -1) return errno; return 0; } static const char *username(const uid_t uid) { static char buffer[128]; struct passwd *pw; pw = getpwuid(uid); if (!pw) return NULL; strncpy(buffer, pw->pw_name, sizeof buffer - 1); buffer[sizeof buffer - 1] = '\0'; return (const char *)buffer; } static const char *groupname(const gid_t gid) { static char buffer[128]; struct group *gr; gr = getgrgid(gid); if (!gr) return NULL; strncpy(buffer, gr->gr_name, sizeof buffer - 1); buffer[sizeof buffer - 1] = '\0'; return (const char *)buffer; } int main(int argc, char *argv[]) { const size_t msglen = 65536; struct message *msg; int socketfd, result; const char *user, *group; if (catch_done(SIGINT) || catch_done(SIGQUIT) || catch_done(SIGHUP) || catch_done(SIGTERM) || catch_done(SIGPIPE)) { fprintf(stderr, "Cannot set signal handlers: %s.\n", strerror(errno)); return 1; } if (argc != 2 || !strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) { fprintf(stderr, "\n"); fprintf(stderr, "Usage: %s [ -h | --help ]\n", argv[0]); fprintf(stderr, " %s MONITOR-SOCKET-PATH\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "This program outputs events reported by libforkmonitor\n"); fprintf(stderr, "to Unix domain datagram sockets at MONITOR-SOCKET-PATH.\n"); fprintf(stderr, "\n"); return 0; } msg = malloc(msglen); if (!msg) { fprintf(stderr, "Out of memory.\n"); return 1; } socketfd = socket(AF_UNIX, SOCK_DGRAM, 0); if (socketfd == -1) { fprintf(stderr, "Cannot create an Unix domain datagram socket: %s.\n", strerror(errno)); return 1; } { struct sockaddr_un addr; size_t len; if (argv[1]) len = strlen(argv[1]); else len = 0; if (len < 1 || len >= UNIX_PATH_MAX) { fprintf(stderr, "%s: Path is too long (max. %d characters)\n", argv[1], UNIX_PATH_MAX - 1); return 1; } memset(&addr, 0, sizeof addr); addr.sun_family = AF_UNIX; memcpy(addr.sun_path, argv[1], len + 1); /* Include '\0' at end */ if (bind(socketfd, (struct sockaddr *)&addr, sizeof (addr)) == -1) { fprintf(stderr, "Cannot bind to %s: %s.\n", argv[1], strerror(errno)); return 1; } } printf("Waiting for connections.\n"); printf("\n"); /* Infinite loop. */ while (!done) { ssize_t n; n = recv(socketfd, msg, msglen, 0); if (n == -1) { const char *const errmsg = strerror(errno); fprintf(stderr, "%s.\n", errmsg); fflush(stderr); break; } if (msglen < sizeof (struct message)) { fprintf(stderr, "Received a partial message; discarded.\n"); fflush(stderr); continue; } switch (msg->type) { case TYPE_EXEC: printf("Received an EXEC message:\n"); break; case TYPE_DONE: printf("Received a DONE message:\n"); break; case TYPE_FORK: printf("Received a FORK message:\n"); break; case TYPE_VFORK: printf("Received a VFORK message:\n"); break; case TYPE_EXIT: printf("Received an EXIT message:\n"); break; case TYPE_ABORT: printf("Received an ABORT message:\n"); break; default: printf("Received an UNKNOWN message:\n"); break; } if (msg->type == TYPE_EXEC && (size_t)n > sizeof (struct message)) { if (*((char *)msg + n - 1) == '\0') printf("\tExecutable: '%s'\n", (char *)msg + sizeof (struct message)); } printf("\tProcess ID: %d\n", (int)msg->pid); printf("\tParent process ID: %d\n", (int)msg->ppid); printf("\tSession ID: %d\n", (int)msg->sid); printf("\tProcess group ID: %d\n", (int)msg->pgid); user = username(msg->uid); if (user) printf("\tReal user: '%s' (%d)\n", user, (int)msg->uid); else printf("\tReal user: %d\n", (int)msg->uid); group = groupname(msg->gid); if (group) printf("\tReal group: '%s' (%d)\n", group, (int)msg->gid); else printf("\tReal group: %d\n", (int)msg->gid); user = username(msg->euid); if (user) printf("\tEffective user: '%s' (%d)\n", user, (int)msg->euid); else printf("\tEffective user: %d\n", (int)msg->euid); group = groupname(msg->egid); if (group) printf("\tEffective group: '%s' (%d)\n", group, (int)msg->egid); else printf("\tEffective group: %d\n", (int)msg->egid); printf("\n"); fflush(stdout); } do { result = close(socketfd); } while (result == -1 && errno == EINTR); unlink(argv[1]); return 0; } Ctrl + C ),INTHUPQUIT信号停止监控程序。

使用

编译库
TERM

和使用

的监控程序
gcc -W -Wall -O3 -fpic -fPIC -c libforkmonitor.c
gcc -shared -Wl,-soname,libforkmonitor.so libforkmonitor.o -ldl -o libforkmonitor.so

在一个终端窗口中,首先启动forkmonitor:

gcc -W -Wall -O3 forkmonitor.c -o forkmonitor

在另一个终端窗口中,在同一目录中,运行被监视的命令,自动预加载./forkmonitor "$PWD/commsocket" 库并指定监视器的套接字:

libforkmonitor.so

请注意,因为它使用env "LD_PRELOAD=$PWD/libforkmonitor.so" "FORKMONITOR_SOCKET=$PWD/commsocket" command args... LD_PRELOAD环境变量,所以如果父进程修改环境(删除两个环境变量),并且执行FORKMONITOR_SOCKETsetuid二进制文件。通过消除环境变量并对其进行硬编码可以避免这种限制。

运行时链接程序不会为setgidsetuid二进制文件预加载库,除非该库位于其中一个标准库目录中,并且还标记为setgid

将库名称添加到setgid将为所有二进制文件预加载库,但您可能应该在/etc/ld.so.preload中添加一种机制,将监视限制为所需的二进制文件和/或指定的真实用户(如运行setuid二进制文件时有效的用户更改。

例如,当我跑

libforkmonitor_init()

监控输出是(匿名的):

env "LD_PRELOAD=$PWD/libforkmonitor.so" "FORKMONITOR_SOCKET=$PWD/commsocket" sh -c 'date ; ls -laF'

这是一个非常轻量级的流程树监控解决方案。除了进程启动,退出和调用其中一个截获的函数(Received an EXEC message: Executable: 'bin/dash' Process ID: 11403 Parent process ID: 9265 Session ID: 9265 Process group ID: 11403 Real user: 'username' (1000) Real group: 'username' (1000) Effective user: 'username' (1000) Effective group: 'username' (1000) Received a FORK message: Process ID: 11404 Parent process ID: 11403 Session ID: 9265 Process group ID: 11403 Real user: 'username' (1000) Real group: 'username' (1000) Effective user: 'username' (1000) Effective group: 'username' (1000) Received an EXEC message: Executable: 'bin/date' Process ID: 11404 Parent process ID: 11403 Session ID: 9265 Process group ID: 11403 Real user: 'username' (1000) Real group: 'username' (1000) Effective user: 'username' (1000) Effective group: 'username' (1000) Received a DONE message: Process ID: 11404 Parent process ID: 11403 Session ID: 9265 Process group ID: 11403 Real user: 'username' (1000) Real group: 'username' (1000) Effective user: 'username' (1000) Effective group: 'username' (1000) Received a FORK message: Process ID: 11405 Parent process ID: 11403 Session ID: 9265 Process group ID: 11403 Real user: 'username' (1000) Real group: 'username' (1000) Effective user: 'username' (1000) Effective group: 'username' (1000) Received an EXEC message: Executable: 'bin/ls' Process ID: 11405 Parent process ID: 11403 Session ID: 9265 Process group ID: 11403 Real user: 'username' (1000) Real group: 'username' (1000) Effective user: 'username' (1000) Effective group: 'username' (1000) Received a DONE message: Process ID: 11405 Parent process ID: 11403 Session ID: 9265 Process group ID: 11403 Real user: 'username' (1000) Real group: 'username' (1000) Effective user: 'username' (1000) Effective group: 'username' (1000) Received an EXIT message: Process ID: 11403 Parent process ID: 9265 Session ID: 9265 Process group ID: 11403 Real user: 'username' (1000) Real group: 'username' (1000) Effective user: 'username' (1000) Effective group: 'username' (1000) fork()vfork()_exit()_Exit())之外,程序执行不会受到影响。因为图书馆很轻,即使受影响的人也会受到非常非常小的影响;可能还不足以可靠地衡量。

显然可以拦截其他功能,和/或使用双向通信,“暂停”拦截功能的执行,直到监控应用程序响应。

总体上存在一些缺陷,特别是与setuid / setgid进程有关,以及生成新环境的进程(省略abort()LD_PRELOAD环境变量),但如果超级用户可以解决这些问题特权可用。

希望您能找到这些信息。有问题吗?

答案 1 :(得分:8)

如果您可以以root身份运行,那么您可以使用netlink interface proc events:

http://bewareofgeek.livejournal.com/2945.html

我刚刚在fedora 17 x86_64上干净地编译了它,它给了我这个:

[root@hip1 yotest]# ./proc
set mcast listen ok
fork: parent tid=2358 pid=2358 -> child tid=21007 pid=21007
exec: tid=21007 pid=21007
fork: parent tid=21007 pid=21007 -> child tid=21008 pid=21008
fork: parent tid=21007 pid=21007 -> child tid=21009 pid=21009
fork: parent tid=21007 pid=21007 -> child tid=21010 pid=21010
fork: parent tid=21007 pid=21007 -> child tid=21011 pid=21011
exec: tid=21010 pid=21010
exec: tid=21008 pid=21008
exec: tid=21011 pid=21011
exec: tid=21009 pid=21009
exit: tid=21008 pid=21008 exit_code=0
fork: parent tid=21010 pid=21010 -> child tid=21012 pid=21012
exit: tid=21009 pid=21009 exit_code=0
exec: tid=21012 pid=21012
exit: tid=21012 pid=21012 exit_code=0
exit: tid=21010 pid=21010 exit_code=0
exit: tid=21011 pid=21011 exit_code=0
exit: tid=21007 pid=21007 exit_code=0

您需要过滤您感兴趣的特定pid,但您可以在第107行的switch语句中轻松完成。

出于保护目的:

#include <sys/socket.h>
#include <linux/netlink.h>
#include <linux/connector.h>
#include <linux/cn_proc.h>
#include <signal.h>
#include <errno.h>
#include <stdbool.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

/*
 * connect to netlink
 * returns netlink socket, or -1 on error
 */
static int nl_connect()
{
    int rc;
    int nl_sock;
    struct sockaddr_nl sa_nl;

    nl_sock = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);
    if (nl_sock == -1) {
        perror("socket");
        return -1;
    }

    sa_nl.nl_family = AF_NETLINK;
    sa_nl.nl_groups = CN_IDX_PROC;
    sa_nl.nl_pid = getpid();

    rc = bind(nl_sock, (struct sockaddr *)&sa_nl, sizeof(sa_nl));
    if (rc == -1) {
        perror("bind");
        close(nl_sock);
        return -1;
    }

    return nl_sock;
}

/*
 * subscribe on proc events (process notifications)
 */
static int set_proc_ev_listen(int nl_sock, bool enable)
{
    int rc;
    struct __attribute__ ((aligned(NLMSG_ALIGNTO))) {
        struct nlmsghdr nl_hdr;
        struct __attribute__ ((__packed__)) {
            struct cn_msg cn_msg;
            enum proc_cn_mcast_op cn_mcast;
        };
    } nlcn_msg;

    memset(&nlcn_msg, 0, sizeof(nlcn_msg));
    nlcn_msg.nl_hdr.nlmsg_len = sizeof(nlcn_msg);
    nlcn_msg.nl_hdr.nlmsg_pid = getpid();
    nlcn_msg.nl_hdr.nlmsg_type = NLMSG_DONE;

    nlcn_msg.cn_msg.id.idx = CN_IDX_PROC;
    nlcn_msg.cn_msg.id.val = CN_VAL_PROC;
    nlcn_msg.cn_msg.len = sizeof(enum proc_cn_mcast_op);

    nlcn_msg.cn_mcast = enable ? PROC_CN_MCAST_LISTEN : PROC_CN_MCAST_IGNORE;

    rc = send(nl_sock, &nlcn_msg, sizeof(nlcn_msg), 0);
    if (rc == -1) {
        perror("netlink send");
        return -1;
    }

    return 0;
}

/*
 * handle a single process event
 */
static volatile bool need_exit = false;
static int handle_proc_ev(int nl_sock)
{
    int rc;
    struct __attribute__ ((aligned(NLMSG_ALIGNTO))) {
        struct nlmsghdr nl_hdr;
        struct __attribute__ ((__packed__)) {
            struct cn_msg cn_msg;
            struct proc_event proc_ev;
        };
    } nlcn_msg;

    while (!need_exit) {
        rc = recv(nl_sock, &nlcn_msg, sizeof(nlcn_msg), 0);
        if (rc == 0) {
            /* shutdown? */
            return 0;
        } else if (rc == -1) {
            if (errno == EINTR) continue;
            perror("netlink recv");
            return -1;
        }
        switch (nlcn_msg.proc_ev.what) {
            case PROC_EVENT_NONE:
                printf("set mcast listen ok\n");
                break;
            case PROC_EVENT_FORK:
                printf("fork: parent tid=%d pid=%d -> child tid=%d pid=%d\n",
                        nlcn_msg.proc_ev.event_data.fork.parent_pid,
                        nlcn_msg.proc_ev.event_data.fork.parent_tgid,
                        nlcn_msg.proc_ev.event_data.fork.child_pid,
                        nlcn_msg.proc_ev.event_data.fork.child_tgid);
                break;
            case PROC_EVENT_EXEC:
                printf("exec: tid=%d pid=%d\n",
                        nlcn_msg.proc_ev.event_data.exec.process_pid,
                        nlcn_msg.proc_ev.event_data.exec.process_tgid);
                break;
            case PROC_EVENT_UID:
                printf("uid change: tid=%d pid=%d from %d to %d\n",
                        nlcn_msg.proc_ev.event_data.id.process_pid,
                        nlcn_msg.proc_ev.event_data.id.process_tgid,
                        nlcn_msg.proc_ev.event_data.id.r.ruid,
                        nlcn_msg.proc_ev.event_data.id.e.euid);
                break;
            case PROC_EVENT_GID:
                printf("gid change: tid=%d pid=%d from %d to %d\n",
                        nlcn_msg.proc_ev.event_data.id.process_pid,
                        nlcn_msg.proc_ev.event_data.id.process_tgid,
                        nlcn_msg.proc_ev.event_data.id.r.rgid,
                        nlcn_msg.proc_ev.event_data.id.e.egid);
                break;
            case PROC_EVENT_EXIT:
                printf("exit: tid=%d pid=%d exit_code=%d\n",
                        nlcn_msg.proc_ev.event_data.exit.process_pid,
                        nlcn_msg.proc_ev.event_data.exit.process_tgid,
                        nlcn_msg.proc_ev.event_data.exit.exit_code);
                break;
            default:
                printf("unhandled proc event\n");
                break;
        }
    }

    return 0;
}

static void on_sigint(int unused)
{
    need_exit = true;
}

int main(int argc, const char *argv[])
{
    int nl_sock;
    int rc = EXIT_SUCCESS;

    signal(SIGINT, &on_sigint);
    siginterrupt(SIGINT, true);

    nl_sock = nl_connect();
    if (nl_sock == -1)
        exit(EXIT_FAILURE);

    rc = set_proc_ev_listen(nl_sock, true);
    if (rc == -1) {
        rc = EXIT_FAILURE;
        goto out;
    }

    rc = handle_proc_ev(nl_sock);
    if (rc == -1) {
        rc = EXIT_FAILURE;
        goto out;
    }

    set_proc_ev_listen(nl_sock, false);

out:
    close(nl_sock);
    exit(rc);
}

(gcc -o proc proc.c)

关于netlink的一些信息:

摘录:http://www.linuxjournal.com/article/7356

  

Netlink是异步的,因为与任何其他套接字API一样,它提供了一个套接字队列来平滑消息的突发。发送netlink消息的系统调用将消息排队到接收者的netlink队列,然后调用接收者的接收处理程序。接收处理程序的上下文中的接收器可以决定是立即处理消息还是将消息保留在队列中,稍后在不同的上下文中处理它。与netlink不同,系统调用需要同步处理。因此,如果我们使用系统调用将消息从用户空间传递到内核,那么如果处理该消息的时间很长,则内核调度粒度可能会受到影响。

最近nltrace也有这个有趣的公告,你可能会发现它也很有趣! http://lists.infradead.org/pipermail/libnl/2013-April/000993.html

答案 2 :(得分:2)

可用的工具很少,可以在运行过程中收集有关进程的信息。

我建议你使用perf和systemTap。

https://perf.wiki.kernel.org/index.php/Main_Page

http://sourceware.org/systemtap/SystemTap_Beginners_Guide/index.html

答案 3 :(得分:0)

使用procps库中的“pidof”系统命令。 非常简单易用。 如果它返回了某些内容,那么进程正在运行,反之亦然。