请参阅以下结果,让我知道在哪里可以进一步优化我的代码以获得更好的加速。
Result
使用的机器:Mac Book Pro处理器:2.5 GHz Intel Core i5(至少4个逻辑核心)
内存:4GB 1600 MHz
编译器:Mac OSX编译器
Sequential Time:0.016466
Using two threads:0.0120111
Using four threads:0.0109911(Speed Up ~ 1.5)
Using 8 threads: 0.0111289
II机器: 操作系统:Linux 硬件:Intel(R)Core™i5-3550 CPU @ 3.30GHz×4 记忆:7.7 GiB 编译器:G ++版本4.6
Sequential Time:0.0128901
Using two threads:0.00838804
Using four threads:0.00612688(Speed up = 2)
Using 8 threads: 0.0101049
请让我知道我的代码中没有提供线性加速的开销。代码中没有任何内容。我在主函数中调用函数“findParallelUCHWOUP”,如下所示:
#pragma omp parallel for private(th_id)
for (th_id = 0; th_id < nthreads; th_id++)
findParallelUCHWOUP(points, th_id + 1, nthreads, inp_size, first[th_id], last[th_id]);
代码:
class Point {
double i, j;
public:
Point() {
i = 0;
j = 0;
}
Point(double x, double y) {
i = x;
j = y;
}
double x() const {
return i;
}
double y() const {
return j;
}
void setValue(double x, double y) {
i = x;
j = y;
}
};
typedef std::vector<Point> Vector;
int second(std::stack<int> &s);
double crossProduct(Point v[], int a, int b, int c);
bool myfunction(Point a, Point b) {
return ((a.x() < b.x()) || (a.x() == b.x() && a.y() < b.y()));
}
class CTPoint {
int i, j;
public:
CTPoint() {
i = 0;
j = 0;
}
CTPoint(int x, int y) {
i = x;
j = y;
}
double getI() const {
return i;
}
double getJ() const {
return j;
}
};
const int nthreads = 4;
const int inp_size = 1000000;
Point output[inp_size];
int numElems = inp_size / nthreads;
int sizes[nthreads];
CTPoint ct[nthreads][nthreads];
//function that is called from different threads
int findParallelUCHWOUP(Point* iv, int id, int thread_num, int inp_size, int first, int last) {
output[first] = iv[first];
std::stack<int> s;
s.push(first);
int i = first + 1;
while (i < last) {
if (crossProduct(iv, i, first, last) > 0) {
s.push(i);
i++;
break;
} else {
i++;
}
}
if (i == last) {
s.push(last);
return 0;
}
for (; i <= last; i++) {
if (crossProduct(iv, i, first, last) >= 0) {
while (s.size() > 1 && crossProduct(iv, s.top(), second(s), i) <= 0) {
s.pop();
}
s.push(i);
}
}
int count = s.size();
sizes[id - 1] = count;
while (!s.empty()) {
output[first + count - 1] = iv[s.top()];
s.pop();
count--;
}
return 0;
}
double crossProduct(Point* v, int a, int b, int c) {
return (v[c].x() - v[b].x()) * (v[a].y() - v[b].y())
- (v[a].x() - v[b].x()) * (v[c].y() - v[b].y());
}
int second(std::stack<int> &s) {
int temp = s.top();
s.pop();
int sec = s.top();
s.push(temp);
return sec;
}
//reads points from a file and divides the array of points to different threads
int main(int argc, char *argv[]) {
// read points from a file and assign them to the input array.
Point *points = new Point[inp_size];
unsigned i = 0;
while (i < Points.size()) {
points[i] = Points[i];
i++;
}
numElems = inp_size / nthreads;
int first[nthreads];
int last[nthreads];
for(int i=1;i<=nthreads;i++){
first[i-1] = (i - 1) * numElems;
if (i == nthreads) {
last[i-1] = inp_size - 1;
} else {
last[i-1] = i * numElems - 1;
}
}
/* Parallel Code starts here*/
int th_id;
omp_set_num_threads(nthreads);
double start = omp_get_wtime();
#pragma omp parallel for private(th_id)
for (th_id = 0; th_id < nthreads; th_id++)
findParallelUCHWOUP(points, th_id + 1, nthreads, inp_size, first[th_id], last[th_id]);
/* Parallel Code ends here*/
double end = omp_get_wtime();
double diff = end - start;
std::cout << "Time Elapsed in seconds:" << diff << '\n';
return 0;
}
答案 0 :(得分:2)
一般情况下线程化,在您的特定情况下,OpenMP确实会引入一定量的开销,这实际上会阻止您获得“真正的”线性加速。你必须考虑到这一点。
其次,测试的运行时间非常短(我假设时间度量是秒?)。在那个级别,你也遇到了函数计时精度的问题,因为开销中的一小部分会对测量结果产生很大的影响。
最后,你还在处理内存访问,如果你正在处理的块和你正在创建的堆栈都不适合处理器缓存,你还必须考虑从中获取数据的开销。记忆。如果您有多个线程读取并可能写入相同的内存区域,后者会变得更糟。这将导致缓存行无效,这意味着您的内核将等待将数据提取到缓存中和/或写入主内存。
我会大规模增加数据的大小,以便您可以在几秒钟内完成运行时,对于初学者,然后再次测量。运行测试代码的时间越长越好,因为如果您进行更多处理,线程的启动和一般开销将扮演较少的角色。
一旦建立了更好的基线,您可能需要一个好的分析器,让您更深入地了解线程,以查看代码中热点的位置。您可能必须为并行化部件滚动自定义数据结构以提高性能,这并不罕见。