我正在使用python,scipy,numpy等。
我想基于像素到图像质心的距离来计算灰度图像的强度值的直方图。以下解决方案有效,但速度很慢:
import matplotlib.pyplot as plt
from scipy import ndimage
import numpy as np
import math
# img is a 2-dimensionsl numpy array
img = np.random.rand(300, 300)
# center of mass of the pixels is easy to get
centerOfMass = np.array(list(ndimage.measurements.center_of_mass(img)))
# declare histogram buckets
histogram = np.zeros(100)
# declare histogram range, which is half the diagonal length of the image, enough in this case.
maxDist = len(img)/math.sqrt(2.0)
# size of the bucket might be less than the width of a pixel, which is fine.
bucketSize = maxDist/len(histogram)
# fill the histogram buckets
for i in range(len(img)):
for j in range(len(img[i])):
dist = np.linalg.norm(centerOfMass - np.array([i,j]))
if(dist/bucketSize < len(histogram)):
histogram[int(dist/bucketSize)] += img[i, j]
# plot the img array
plt.subplot(121)
imgplot = plt.imshow(img)
imgplot.set_cmap('hot')
plt.colorbar()
plt.draw()
# plot the histogram
plt.subplot(122)
plt.plot(histogram)
plt.draw()
plt.show()
正如我之前所说,这是有效的,但是非常慢,因为你不应该在numpy中以这种方式双循环数组。是否有更有效的方法来做同样的事情?我假设我需要在所有数组元素上应用一些函数,但我也需要索引坐标。我怎样才能做到这一点?目前1kx1k图像需要几秒钟,这是非常慢的。
答案 0 :(得分:2)
所有numpy binning函数(bincount
,histogram
,histogram2d
...都有一个weights
关键字参数,您可以使用它来执行非常奇怪的事情,例如您的。我就是这样做的:
rows, cols = 300, 300
img = np.random.rand(rows, cols)
# calculate center of mass position
row_com = np.sum(np.arange(rows)[:, None] * img) / np.sum(img)
col_com = np.sum(np.arange(cols) * img) / np.sum(img)
# create array of distances to center of mass
dist = np.sqrt(((np.arange(rows) - row_com)**2)[:, None] +
(np.arange(cols) - col_com)**2)
# build histogram, with intensities as weights
bins = 100
hist, edges = np.histogram(dist, bins=bins, weights=img)
# to reproduce your exact results, you must specify the bin edges
bins = np.linspace(0, len(img)/math.sqrt(2.0), 101)
hist2, edges2 = np.histogram(dist, bins=bins, weights=img)
没有给两种方法计时,但从终端运行时的延迟来判断,这明显加快了。