我有一个if-elif-elif-else语句,其中99%的时间是执行else语句:
if something == 'this':
doThis()
elif something == 'that':
doThat()
elif something == 'there':
doThere()
else:
doThisMostOfTheTime()
这个构造已经很多,但由于它在遇到其他条件之前会超过每个条件,我感觉这不是很有效,更不用说Pythonic了。另一方面,它确实需要知道是否满足任何条件,所以它应该测试它。
有人知道是否以及如何更有效地完成这项工作,或者这只是最好的方法吗?
答案 0 :(得分:87)
代码......
options.get(something, doThisMostOfTheTime)()
...看起来它应该更快,但它实际上比if
... elif
... else
构造慢,因为它必须调用一个函数,这在紧密循环中可能是一个重要的性能开销。
考虑这些例子......
<强> 1.py 强>
something = 'something'
for i in xrange(1000000):
if something == 'this':
the_thing = 1
elif something == 'that':
the_thing = 2
elif something == 'there':
the_thing = 3
else:
the_thing = 4
<强> 2.py 强>
something = 'something'
options = {'this': 1, 'that': 2, 'there': 3}
for i in xrange(1000000):
the_thing = options.get(something, 4)
<强> 3.py 强>
something = 'something'
options = {'this': 1, 'that': 2, 'there': 3}
for i in xrange(1000000):
if something in options:
the_thing = options[something]
else:
the_thing = 4
<强> 4.py 强>
from collections import defaultdict
something = 'something'
options = defaultdict(lambda: 4, {'this': 1, 'that': 2, 'there': 3})
for i in xrange(1000000):
the_thing = options[something]
...并注意他们使用的CPU时间......
1.py: 160ms
2.py: 170ms
3.py: 110ms
4.py: 100ms
...使用time(1)
的用户时间。
选项#4确实有额外的内存开销,为每个不同的密钥未命中添加一个新项目,所以如果你期望一个无限的密钥未命中数量,我会选择#3,它仍然是原始结构的显着改善。
答案 1 :(得分:74)
我要创建一个词典:
options = {'this': doThis,'that' :doThat, 'there':doThere}
现在只使用:
options.get(something, doThisMostOfTheTime)()
如果在something
字典中找不到options
,则dict.get
将返回默认值doThisMostOfTheTime
一些时间比较:
脚本:
from random import shuffle
def doThis():pass
def doThat():pass
def doThere():pass
def doSomethingElse():pass
options = {'this':doThis, 'that':doThat, 'there':doThere}
lis = range(10**4) + options.keys()*100
shuffle(lis)
def get():
for x in lis:
options.get(x, doSomethingElse)()
def key_in_dic():
for x in lis:
if x in options:
options[x]()
else:
doSomethingElse()
def if_else():
for x in lis:
if x == 'this':
doThis()
elif x == 'that':
doThat()
elif x == 'there':
doThere()
else:
doSomethingElse()
结果:
>>> from so import *
>>> %timeit get()
100 loops, best of 3: 5.06 ms per loop
>>> %timeit key_in_dic()
100 loops, best of 3: 3.55 ms per loop
>>> %timeit if_else()
100 loops, best of 3: 6.42 ms per loop
对于10**5
不存在的密钥和100个有效密钥::
>>> %timeit get()
10 loops, best of 3: 84.4 ms per loop
>>> %timeit key_in_dic()
10 loops, best of 3: 50.4 ms per loop
>>> %timeit if_else()
10 loops, best of 3: 104 ms per loop
因此,对于使用key in options
检查密钥的普通字典,这是最有效的方法:
if key in options:
options[key]()
else:
doSomethingElse()
答案 2 :(得分:7)
你能使用pypy吗?
保留原始代码但在pypy上运行它可为我提供50倍的加速。
CPython的:
matt$ python
Python 2.6.8 (unknown, Nov 26 2012, 10:25:03)
[GCC 4.2.1 Compatible Apple Clang 3.0 (tags/Apple/clang-211.12)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from timeit import timeit
>>> timeit("""
... if something == 'this': pass
... elif something == 'that': pass
... elif something == 'there': pass
... else: pass
... """, "something='foo'", number=10000000)
1.728302001953125
Pypy:
matt$ pypy
Python 2.7.3 (daf4a1b651e0, Dec 07 2012, 23:00:16)
[PyPy 2.0.0-beta1 with GCC 4.2.1] on darwin
Type "help", "copyright", "credits" or "license" for more information.
And now for something completely different: ``a 10th of forever is 1h45''
>>>>
>>>> from timeit import timeit
>>>> timeit("""
.... if something == 'this': pass
.... elif something == 'that': pass
.... elif something == 'there': pass
.... else: pass
.... """, "something='foo'", number=10000000)
0.03306388854980469
答案 3 :(得分:0)
这是将动态条件转换为字典的if的示例。
selector = {lambda d: datetime(2014, 12, 31) >= d : 'before2015',
lambda d: datetime(2015, 1, 1) <= d < datetime(2016, 1, 1): 'year2015',
lambda d: datetime(2016, 1, 1) <= d < datetime(2016, 12, 31): 'year2016'}
def select_by_date(date, selector=selector):
selected = [selector[x] for x in selector if x(date)] or ['after2016']
return selected[0]
这是一种方式,但可能不是最诡计多端的方式,因为对于不熟悉Python的人来说,它的可读性较差。
答案 4 :(得分:0)
出于安全原因,人们警告exec
,但这是一个理想的例子。
这是一个简单的状态机。
Codes = {}
Codes [0] = compile('blah blah 0; nextcode = 1')
Codes [1] = compile('blah blah 1; nextcode = 2')
Codes [2] = compile('blah blah 2; nextcode = 0')
nextcode = 0
While True:
exec(Codes[nextcode])
答案 5 :(得分:0)
最近,我遇到了一种替代“嵌套”的方法,该方法将我的函数的运行时间从2.5小时减少到了约2分钟。让我们开始吧:
早期代码
bin = lambda x:如果x == 0,则为“未知”;否则,如果x> 75,否则为“高”;如果x> 50,且x <= 75,则为“中等”;否则,如果x> 25和x <= 50否则为“低”)))
col.apply(bin)时间〜2.5小时
优化代码
定义字典替代嵌套,否则 def dict_function(*args):
'Pass in a list of tuples, which will be key/value pairs'
ret = {}
for k,v in args:
for i in k:
ret[i] = v
return ret
Dict = dict_function(([0],"Unknown"),(range(1,25),"Low"),(range(25,50),"Medium_Low"),(range(50,75),"Medium"),(range(75,100),"High"))
col.apply(lambda x:Dict[x])
dict_function为给定范围创建多个key_value对。 时间〜2分钟
答案 6 :(得分:0)
最近我遇到了同样的问题,尽管与性能无关,但是我不喜欢创建函数并将其手动添加到字典中的“ API”。我想要一个类似于functools.singledispatch
的API,但要根据值而不是类型进行分配。所以...
def value_dispatch(func):
"""value-dispatch function decorator.
Transforms a function into a function, that dispatches its calls based on the
value of the first argument.
"""
funcname = getattr(func, '__name__')
registry = {}
def dispatch(arg):
"""return the function that matches the argument"""
return registry.get(arg, func)
def register(arg):
def wrapper(func):
"""register a function"""
registry[arg] = func
return func
return wrapper
def wrapper(*args, **kwargs):
if not args:
raise ValueError(f'{funcname} requires at least 1 positional argument')
return dispatch(args[0])(*args, **kwargs)
wrapper.register = register
wrapper.dispatch = dispatch
wrapper.registry = registry
return wrapper
像这样使用:
@value_dispatch
def handle_something():
print("default")
@handle_something.register(1)
def handle_one():
print("one")
handle_something(1)
handle_something(2)
PS:我创建了a snippet on Gitlab供参考