使用apply删除groupby中的重复项

时间:2013-06-15 17:34:43

标签: python duplicates pandas

我已成功将两个DataFrame合并为其临时最近邻居。我目前的中间结果如下:

                     merge_key              jd  var2               index  distance  
2010-01-01 00:00:00          0  2455197.500000     0 2010-01-01 00:00:00      0
2010-01-01 00:06:00          0  2455197.500000     0 2010-01-01 00:00:00   -360
2010-01-01 00:12:00          0  2455197.500000     0 2010-01-01 00:00:00   -720
2010-01-01 00:18:00          1  2455197.517361     1 2010-01-01 00:25:00    420
2010-01-01 00:24:00          1  2455197.517361     1 2010-01-01 00:25:00     60
2010-01-01 00:30:00          1  2455197.517361     1 2010-01-01 00:25:00   -300
2010-01-01 00:36:00          1  2455197.517361     1 2010-01-01 00:25:00   -660
2010-01-01 00:42:00          2  2455197.534722     2 2010-01-01 00:50:00    480
2010-01-01 00:48:00          2  2455197.534722     2 2010-01-01 00:50:00    120
2010-01-01 00:54:00          2  2455197.534722     2 2010-01-01 00:50:00   -240

在下一步中,我想删除重复的条目,并仅选择具有最小距离的条目。我提出了:

df.groupby("merge_key").apply(lambda x: x.ix[np.abs(x['distance']).idxmin()])

然而,这导致:

          merge_key       jd var2                index distance
merge_key                                                      
0                 0  2455198    0  2010-01-01 00:00:00        0
1                 1  2455198    1  2010-01-01 00:25:00       60
2                 2  2455198    2  2010-01-01 00:50:00      120

似乎“jd”中的数据类型已更改为整数?而且我也不希望将merge_key作为新索引。

我想要的输出实际上是:

                     merge_key              jd  var2               index  distance  
2010-01-01 00:00:00          0  2455197.500000     0 2010-01-01 00:00:00      0
2010-01-01 00:24:00          1  2455197.517361     1 2010-01-01 00:25:00     60
2010-01-01 00:48:00          2  2455197.534722     2 2010-01-01 00:50:00    120

1 个答案:

答案 0 :(得分:1)

如果您使用稍微简单的方法执行此操作,则会得到正确的结果:

In [11]: g = df.groupby('merge_key')

In [12]: min_dists = g.distance.apply(lambda x: x.abs().idxmin())

In [13]: min_dists
Out[13]:
merge_key
0            0
1            4
2            8
dtype: int64

In [14]: df.iloc[min_dists]
Out[14]:
                  date  merge_key              jd  var2                index  distance
0  2010-01-01 00:00:00          0  2455197.500000     0  2010-01-01 00:00:00         0
4  2010-01-01 00:24:00          1  2455197.517361     1  2010-01-01 00:25:00        60
8  2010-01-01 00:48:00          2  2455197.534722     2  2010-01-01 00:50:00       120

我认为这可能是一个错误,所以也许值得打开an issue