FileNotFoundException异常

时间:2013-06-15 07:20:12

标签: java exception filenotfoundexception libsvm

这是我的班级svm_predict

package pack.test;

import java.io.*;
import java.util.*;

public class svm_predict {

File inputFile;
File outputFile;
File modelFile;

public svm_predict(File inputFile,  File modelFile,File outputFile) {
    super();
    this.inputFile = inputFile;
    this.outputFile = outputFile;
    this.modelFile = modelFile;
}
private static svm_print_interface svm_print_null = new svm_print_interface()
{
    public void print(String s) {}
};

private static svm_print_interface svm_print_stdout = new svm_print_interface()
{
    public void print(String s)
    {
        System.out.print(s);
    }
};

private static svm_print_interface svm_print_string = svm_print_stdout;

static void info(String s) 
{
    svm_print_string.print(s);
}

private static double atof(String s)
{
    return Double.valueOf(s).doubleValue();
}

private static int atoi(String s)
{
    return Integer.parseInt(s);
}

private static void predict(BufferedReader input, svm_model model, DataOutputStream output, int predict_probability) throws IOException
{
    int correct = 0;
    int total = 0;
    double error = 0;
    double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;

    int svm_type=svm.svm_get_svm_type(model);
    int nr_class=svm.svm_get_nr_class(model);
    double[] prob_estimates=null;

    if(predict_probability == 1)
    {
        if(svm_type == svm_parameter.EPSILON_SVR ||
           svm_type == svm_parameter.NU_SVR)
        {
            svm_predict.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma="+svm.svm_get_svr_probability(model)+"\n");
        }
        else
        {
            int[] labels=new int[nr_class];
            svm.svm_get_labels(model,labels);
            prob_estimates = new double[nr_class];
            output.writeBytes("labels");
            for(int j=0;j<nr_class;j++)
                output.writeBytes(" "+labels[j]);
            output.writeBytes("\n");
        }
    }
    while(true)
    {
        String line = input.readLine();
        if(line == null) break;

        StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");

        double target = atof(st.nextToken());
        int m = st.countTokens()/2;
        svm_node[] x = new svm_node[m];
        for(int j=0;j<m;j++)
        {
            x[j] = new svm_node();
            x[j].index = atoi(st.nextToken());
            x[j].value = atof(st.nextToken());
        }

        double v;
        if (predict_probability==1 && (svm_type==svm_parameter.C_SVC || svm_type==svm_parameter.NU_SVC))
        {
            v = svm.svm_predict_probability(model,x,prob_estimates);
            output.writeBytes(v+" ");
            for(int j=0;j<nr_class;j++)
                output.writeBytes(prob_estimates[j]+" ");
            output.writeBytes("\n");
        }
        else
        {
            v = svm.svm_predict(model,x);
            output.writeBytes(v+"\n");
        }

        if(v == target)
            ++correct;
        error += (v-target)*(v-target);
        sumv += v;
        sumy += target;
        sumvv += v*v;
        sumyy += target*target;
        sumvy += v*target;
        ++total;
    }
    if(svm_type == svm_parameter.EPSILON_SVR ||
       svm_type == svm_parameter.NU_SVR)
    {
        svm_predict.info("Mean squared error = "+error/total+" (regression)\n");
        svm_predict.info("Squared correlation coefficient = "+
             ((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/
             ((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy))+
             " (regression)\n");
    }
    else
        svm_predict.info("Accuracy = "+(double)correct/total*100+
             "% ("+correct+"/"+total+") (classification)\n");
}

private static void exit_with_help()
{
    System.err.print("usage: svm_predict [options] test_file model_file output_file\n"
    +"options:\n"
    +"-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n"
    +"-q : quiet mode (no outputs)\n");
    System.exit(1);
}

public  void run ()
{
    int i, predict_probability=0;

    try 
    {
        BufferedReader input = new BufferedReader(new FileReader(inputFile));
        DataOutputStream output = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(outputFile)));
    System.out.println(modelFile.canRead());
    System.out.println(modelFile.getName());
        svm_model model = new svm().svm_load_model(modelFile.getName());
        if(predict_probability == 1)
        {
            if(svm.svm_check_probability_model(model)==0)
            {
                System.err.print("Model does not support probabiliy estimates\n");
                System.exit(1);
            }
        }
        else
        {
            if(svm.svm_check_probability_model(model)!=0)
            {
                svm_predict.info("Model supports probability estimates, but disabled in prediction.\n");
            }
        }


        predict(input,model,output,predict_probability);

        System.out.println(modelFile.canRead());
        System.out.println(modelFile.getName());            
    } 
    catch(FileNotFoundException e) 
    {
        e.printStackTrace();
        exit_with_help();
    }
    catch(ArrayIndexOutOfBoundsException e) 
    {
        e.printStackTrace();
        exit_with_help();
    } catch (IOException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }
}

}

当我尝试使用单个模型文件时,它可以正常工作

  new svm_predict(new File("VisualCaractristic.libsvm"),modelFile,new   File(Directory.listFiles()[i].getName()+".predit")).run();

但是当我尝试循环目录File

我收到例外FileNotfoundException

    File Directory = new File ("visualModels");
if (Directory.isDirectory()) System.out.println("true");
System.out.println(Directory.canRead());


    for (int i = 0; i < Directory.listFiles().length; i++) {
        new svm_predict(new File("VisualCaractristic.libsvm"),Directory.listFiles()[i],new File(Directory.listFiles()[i].getName()+".predit")).run();

    }

班级svm.java

    public  svm_model svm_load_model(String model_file_name) throws IOException
{

    return svm_load_model(new BufferedReader(new FileReader(model_file_name)));
}

public  svm_model svm_load_model(BufferedReader fp) throws IOException
{
    // read parameters

    svm_model model = new svm_model();
    svm_parameter param = new svm_parameter();
    model.param = param;
    model.rho = null;
    model.probA = null;
    model.probB = null;
    model.label = null;
    model.nSV = null;

    while(true)
    {
        String cmd = fp.readLine();
        String arg = cmd.substring(cmd.indexOf(' ')+1);

        if(cmd.startsWith("svm_type"))
        {
            int i;
            for(i=0;i<svm_type_table.length;i++)
            {
                if(arg.indexOf(svm_type_table[i])!=-1)
                {
                    param.svm_type=i;
                    break;
                }
            }
            if(i == svm_type_table.length)
            {
                System.err.print("unknown svm type.\n");
                return null;
            }
        }
        else if(cmd.startsWith("kernel_type"))
        {
            int i;
            for(i=0;i<kernel_type_table.length;i++)
            {
                if(arg.indexOf(kernel_type_table[i])!=-1)
                {
                    param.kernel_type=i;
                    break;
                }
            }
            if(i == kernel_type_table.length)
            {
                System.err.print("unknown kernel function.\n");
                return null;
            }
        }
        else if(cmd.startsWith("degree"))
            param.degree = atoi(arg);
        else if(cmd.startsWith("gamma"))
            param.gamma = atof(arg);
        else if(cmd.startsWith("coef0"))
            param.coef0 = atof(arg);
        else if(cmd.startsWith("nr_class"))
            model.nr_class = atoi(arg);
        else if(cmd.startsWith("total_sv"))
            model.l = atoi(arg);
        else if(cmd.startsWith("rho"))
        {
            int n = model.nr_class * (model.nr_class-1)/2;
            model.rho = new double[n];
            StringTokenizer st = new StringTokenizer(arg);
            for(int i=0;i<n;i++)
                model.rho[i] = atof(st.nextToken());
        }
        else if(cmd.startsWith("label"))
        {
            int n = model.nr_class;
            model.label = new int[n];
            StringTokenizer st = new StringTokenizer(arg);
            for(int i=0;i<n;i++)
                model.label[i] = atoi(st.nextToken());                  
        }
        else if(cmd.startsWith("probA"))
        {
            int n = model.nr_class*(model.nr_class-1)/2;
            model.probA = new double[n];
            StringTokenizer st = new StringTokenizer(arg);
            for(int i=0;i<n;i++)
                model.probA[i] = atof(st.nextToken());                  
        }
        else if(cmd.startsWith("probB"))
        {
            int n = model.nr_class*(model.nr_class-1)/2;
            model.probB = new double[n];
            StringTokenizer st = new StringTokenizer(arg);
            for(int i=0;i<n;i++)
                model.probB[i] = atof(st.nextToken());                  
        }
        else if(cmd.startsWith("nr_sv"))
        {
            int n = model.nr_class;
            model.nSV = new int[n];
            StringTokenizer st = new StringTokenizer(arg);
            for(int i=0;i<n;i++)
                model.nSV[i] = atoi(st.nextToken());
        }
        else if(cmd.startsWith("SV"))
        {
            break;
        }
        else
        {
            System.err.print("unknown text in model file: ["+cmd+"]\n");
            return null;
        }
    }

    // read sv_coef and SV

    int m = model.nr_class - 1;
    int l = model.l;
    model.sv_coef = new double[m][l];
    model.SV = new svm_node[l][];

    for(int i=0;i<l;i++)
    {
        String line = fp.readLine();
        StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");

        for(int k=0;k<m;k++)
            model.sv_coef[k][i] = atof(st.nextToken());
        int n = st.countTokens()/2;
        model.SV[i] = new svm_node[n];
        for(int j=0;j<n;j++)
        {
            model.SV[i][j] = new svm_node();
            model.SV[i][j].index = atoi(st.nextToken());
            model.SV[i][j].value = atof(st.nextToken());
        }
    }

    //fp.close();
    return model;
}

2 个答案:

答案 0 :(得分:3)

好的,这就是问题所在:

svm_model model = new svm().svm_load_model(modelFile.getName());

这只是使用文件名的最后一位 - 它不知道要在哪个目录中找到它。您需要传递modelFile.getPath(),或者理想情况下更改您的svm_load_model方法以接受File代替String

此外,您应该将代码更改为:

  • 只调用Directory.listFiles一次并记住结果(目前效率非常低)
  • 修复所有变量,方法和类名称以遵循Java命名约定
  • 使用Directory.isFile确保您只尝试加载文件。您可能还想将其更改为仅加载具有给定扩展名的文件。

答案 1 :(得分:0)

您可以尝试使用: 文件目录=新文件(“visualModels”); (变量的名称以小写字母开头,这是一种惯例)

并在你的循环中使用: directory.isFile()来检查它是否是文件。

grtz