我已经实施了一项研究项目的基本搜索。我正在尝试通过构建suffix tree来提高搜索效率。我对Ukkonen算法的C#实现很感兴趣。如果存在这样的实现,我不想浪费时间自己动手。
答案 0 :(得分:12)
难题。这是我能找到的最接近的匹配:http://www.codeproject.com/KB/recipes/ahocorasick.aspx,它是Aho-Corasick字符串匹配算法的实现。现在,该算法使用类似后缀树的结构:http://en.wikipedia.org/wiki/Aho-Corasick_algorithm
现在,如果你想要一个前缀树,本文声称有一个实现:http://www.codeproject.com/KB/recipes/prefixtree.aspx
< 幽默>既然我完成了你的作业,你怎么样我的草坪。 (参考:http://flyingmoose.org/tolksarc/homework.htm)< / HUMOR >
编辑:我发现了一个C#后缀树实现,它是在博客上发布的C ++端口:http://code.google.com/p/csharsuffixtree/source/browse/#svn/trunk/suffixtree
编辑:Codeplex上有一个专注于后缀树的新项目:http://suffixtree.codeplex.com/
答案 1 :(得分:3)
这是一个合理有效的后缀树的实现。我还没有研究过Ukkonen的实现,但我相信这个算法的运行时间非常合理,约为O(N Log N)
。请注意,创建的树中的内部节点数等于父字符串中的字母数。
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using NUnit.Framework;
namespace FunStuff
{
public class SuffixTree
{
public class Node
{
public int Index = -1;
public Dictionary<char, Node> Children = new Dictionary<char, Node>();
}
public Node Root = new Node();
public String Text;
public void InsertSuffix(string s, int from)
{
var cur = Root;
for (int i = from; i < s.Length; ++i)
{
var c = s[i];
if (!cur.Children.ContainsKey(c))
{
var n = new Node() {Index = from};
cur.Children.Add(c, n);
// Very slow assertion.
Debug.Assert(Find(s.Substring(from)).Any());
return;
}
cur = cur.Children[c];
}
Debug.Assert(false, "It should never be possible to arrive at this case");
throw new Exception("Suffix tree corruption");
}
private static IEnumerable<Node> VisitTree(Node n)
{
foreach (var n1 in n.Children.Values)
foreach (var n2 in VisitTree(n1))
yield return n2;
yield return n;
}
public IEnumerable<int> Find(string s)
{
var n = FindNode(s);
if (n == null) yield break;
foreach (var n2 in VisitTree(n))
yield return n2.Index;
}
private Node FindNode(string s)
{
var cur = Root;
for (int i = 0; i < s.Length; ++i)
{
var c = s[i];
if (!cur.Children.ContainsKey(c))
{
// We are at a leaf-node.
// What we do here is check to see if the rest of the string is at this location.
for (var j=i; j < s.Length; ++j)
if (cur.Index + j >= Text.Length || Text[cur.Index + j] != s[j])
return null;
return cur;
}
cur = cur.Children[c];
}
return cur;
}
public SuffixTree(string s)
{
Text = s;
for (var i = s.Length - 1; i >= 0; --i)
InsertSuffix(s, i);
Debug.Assert(VisitTree(Root).Count() - 1 == s.Length);
}
}
[TestFixture]
public class TestSuffixTree
{
[Test]
public void TestBasics()
{
var s = "banana";
var t = new SuffixTree(s);
var results = t.Find("an").ToArray();
Assert.AreEqual(2, results.Length);
Assert.AreEqual(1, results[0]);
Assert.AreEqual(3, results[1]);
}
}
}
答案 2 :(得分:3)
Hei,刚刚完成了包含不同trie实现的.NET(c#)库。其中:
我尝试使源代码易于阅读。用法也很直接:
using Gma.DataStructures.StringSearch;
...
var trie = new UkkonenTrie<int>(3);
//var trie = new SuffixTrie<int>(3);
trie.Add("hello", 1);
trie.Add("world", 2);
trie.Add("hell", 3);
var result = trie.Retrieve("hel");
该库经过了充分测试,并以TrieNet NuGet包发布。