Pandas:过滤数量少于指定值的数据透视表行

时间:2013-06-14 13:17:54

标签: python pandas pivot-table

我有一个看起来像这样的pandas数据透视表:

C             bar       foo
A     B                    
one   A -1.154627 -0.243234
three A -1.327977  0.243234
      B  1.327977 -0.079051
      C -0.832506  1.327977  
two   A  1.327977 -0.128534
      B  0.835120  1.327977
      C  1.327977  0.838040

我希望能够过滤掉列B中列A少于2行的行,以便上面的表格会过滤A = 1:

C             bar       foo
A     B                    
three A -1.327977  0.243234
      B  1.327977 -0.079051
      C -0.832506  1.327977  
two   A  1.327977 -0.128534
      B  0.835120  1.327977
      C  1.327977  0.838040

我该怎么做?

2 个答案:

答案 0 :(得分:7)

在一行中:

In [64]: df[df.groupby(level=0).bar.transform(lambda x: len(x) >= 2).astype('bool')]
Out[64]: 
              bar       foo
two   A  0.944908  0.701687
      B -0.204075  0.713141
      C  0.730844 -0.022302
three A  1.263489 -1.382653
      B  0.124444  0.907667
      C -2.407691 -0.773040

在即将发布的pandas(11.1)中,新的filter method可以更快,更直观地实现这一目标:

In [65]: df.groupby(level=0).filter(lambda x: len(x['bar']) >= 2)
Out[65]: 
              bar       foo
three A  1.263489 -1.382653
      B  0.124444  0.907667
      C -2.407691 -0.773040
two   A  0.944908  0.701687
      B -0.204075  0.713141
      C  0.730844 -0.022302

答案 1 :(得分:2)

一种方法是将'A'分组,然后查看大小为3的那些组:

In [11]: g = df1.groupby(level='A')

In [12]: g.size()
Out[12]:
A
one      1
three    3
two      3
dtype: int64

In [13]: size = g.size()

In [13]: big_size = size[size>=3]

In [14]: big_size
Out[14]:
A
three    3
two      3
dtype: int64

然后你可以看到哪些行有“好”的'A'值,并按以下方式切片:

In [15]: good_A = df1.index.get_level_values('A').isin(big_size.index)

In [16]: good_A
Out[16]: array([False,  True,  True,  True,  True,  True,  True], dtype=bool)

In [17]: df1[good_A]
Out[17]:
              bar       foo
A     B
three A -1.327977  0.243234
      B  1.327977 -0.079051
      C -0.832506  1.327977
two   A  1.327977 -0.128534
      B  0.835120  1.327977
      C  1.327977  0.838040