如何根据pandas中某些列中的值从DataFrame
中选择行?
在 SQL 中,我会使用:
SELECT *
FROM table
WHERE colume_name = some_value
我试着查看pandas文档,但没有立即找到答案。
答案 0 :(得分:2665)
要选择列值等于标量some_value
的行,请使用==
:
df.loc[df['column_name'] == some_value]
要选择列值为可迭代的行some_values
,请使用isin
:
df.loc[df['column_name'].isin(some_values)]
将多个条件与&
:
df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]
请注意括号。由于Python operator precedence rules,&
的绑定比<=
和>=
更紧密。因此,最后一个例子中的括号是必要的。没有括号
df['column_name'] >= A & df['column_name'] <= B
被解析为
df['column_name'] >= (A & df['column_name']) <= B
会产生Truth value of a Series is ambiguous error。
要选择列值不等于 some_value
的行,请使用!=
:
df.loc[df['column_name'] != some_value]
isin
返回一个布尔系列,因此要在some_values
中选择值 not 的行,请使用~
取消布尔系列:
df.loc[~df['column_name'].isin(some_values)]
例如,
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split(),
'C': np.arange(8), 'D': np.arange(8) * 2})
print(df)
# A B C D
# 0 foo one 0 0
# 1 bar one 1 2
# 2 foo two 2 4
# 3 bar three 3 6
# 4 foo two 4 8
# 5 bar two 5 10
# 6 foo one 6 12
# 7 foo three 7 14
print(df.loc[df['A'] == 'foo'])
产量
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
如果您想要包含多个值,请将它们放入
列表(或更一般地,任何可迭代的)并使用isin
:
print(df.loc[df['B'].isin(['one','three'])])
产量
A B C D
0 foo one 0 0
1 bar one 1 2
3 bar three 3 6
6 foo one 6 12
7 foo three 7 14
但请注意,如果您希望多次这样做,那么效率会更高
首先制作索引,然后使用df.loc
:
df = df.set_index(['B'])
print(df.loc['one'])
产量
A C D
B
one foo 0 0
one bar 1 2
one foo 6 12
或者,要包含索引中的多个值,请使用df.index.isin
:
df.loc[df.index.isin(['one','two'])]
产量
A C D
B
one foo 0 0
one bar 1 2
two foo 2 4
two foo 4 8
two bar 5 10
one foo 6 12
答案 1 :(得分:225)
大熊猫相当于
select * from table where column_name = some_value
是
table[table.column_name == some_value]
多个条件:
table[(table.column_name == some_value) | (table.column_name2 == some_value2)]
或
table.query('column_name == some_value | column_name2 == some_value2')
import pandas as pd
# Create data set
d = {'foo':[100, 111, 222],
'bar':[333, 444, 555]}
df = pd.DataFrame(d)
# Full dataframe:
df
# Shows:
# bar foo
# 0 333 100
# 1 444 111
# 2 555 222
# Output only the row(s) in df where foo is 222:
df[df.foo == 222]
# Shows:
# bar foo
# 2 555 222
在上面的代码中,行df[df.foo == 222]
根据列值{@ 1}}提供行。
也有多种条件:
222
但是在那时我建议使用query函数,因为它的详细程度较低并且产生相同的结果:
df[(df.foo == 222) | (df.bar == 444)]
# bar foo
# 1 444 111
# 2 555 222
答案 2 :(得分:170)
从pandas数据框中选择行有几种基本方法。
对于每种基本类型,我们可以通过将自己限制在pandas API中来保持简单,或者我们可以在API之外冒险,通常是numpy
,并加快速度。
我将向您展示每种示例,并指导您何时使用某些技术。
<强>设置强>
我们需要的第一件事是确定一个条件,作为我们选择行的标准。 OP提供column_name == some_value
。我们将从那里开始并包含一些其他常见用例。
借用@unutbu:
import pandas as pd, numpy as np
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split(),
'C': np.arange(8), 'D': np.arange(8) * 2})
假设我们的标准是列'A'
= 'foo'
<强> 1 强>
布尔索引要求查找每行'A'
列的真实值等于'foo'
,然后使用这些真值来标识要保留的行。通常,我们将此系列命名为一系列真值mask
。我们也会这样做。
mask = df['A'] == 'foo'
然后我们可以使用此掩码对数据帧进行切片或索引
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
这是完成此任务的最简单方法之一,如果性能或直观性不是问题,那么这应该是您选择的方法。但是,如果需要考虑性能,那么您可能需要考虑另一种创建mask
的方法。
<强> 2 强>
位置索引有其用例,但这不是其中之一。为了确定切片的位置,我们首先需要执行上面我们所做的相同的布尔分析。这使我们执行了一个额外的步骤来完成相同的任务。
mask = df['A'] == 'foo'
pos = np.flatnonzero(mask)
df.iloc[pos]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
第3 强>
标签索引可以非常方便,但在这种情况下,我们再次做更多的工作,没有任何好处
df.set_index('A', append=True, drop=False).xs('foo', level=1)
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
<强> 4 强>
pd.DataFrame.query
是执行此任务的非常优雅/直观的方式。但往往比较慢。 但是,如果您注意以下时间,对于大数据,查询非常有效。比标准方法更重要,与我最好的建议相似。
df.query('A == "foo"')
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
我的偏好是使用Boolean
mask
可以通过修改我们创建Boolean
mask
。
mask
替代方案1
使用基础numpy
数组并放弃创建另一个pd.Series
mask = df['A'].values == 'foo'
我会在最后展示更完整的时间测试,但只是看看我们使用示例数据框获得的性能提升。首先,我们来看看创建mask
%timeit mask = df['A'].values == 'foo'
%timeit mask = df['A'] == 'foo'
5.84 µs ± 195 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
166 µs ± 4.45 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
使用mask
数组评估numpy
的速度要快30倍。这部分是由于numpy
评估通常更快。部分原因还在于缺乏构建索引和相应pd.Series
对象所需的开销。
接下来,我们将查看使用一个mask
与另一个mask = df['A'].values == 'foo'
%timeit df[mask]
mask = df['A'] == 'foo'
%timeit df[mask]
219 µs ± 12.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
239 µs ± 7.03 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
进行切片的时间。
mask
性能提升并不明显。我们将看看这是否会阻碍更强大的测试。
dtypes
替代方案2
我们也可以重建数据框。在重建数据帧时有一个很大的警告 - 这样做时你必须注意df[mask]
!
而不是pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)
我们会这样做
df.values
如果数据框是混合类型,我们的示例是,那么当我们得到dtype
时,结果数组是object
dtype
因此,新数据的所有列框架将为object
astype(df.dtypes)
。因此需要%timeit df[m]
%timeit pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)
216 µs ± 10.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.43 ms ± 39.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
并消除任何潜在的性能提升。
np.random.seed([3,1415])
d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))
d1
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
2 0 2 0 4 9
3 7 3 2 4 3
4 3 6 7 7 4
5 5 3 7 5 9
6 8 7 6 4 7
7 6 2 6 6 5
8 2 8 7 5 8
9 4 7 6 1 5
但是,如果数据框不是混合类型,这是一种非常有用的方法。
鉴于
%%timeit
mask = d1['A'].values == 7
d1[mask]
179 µs ± 8.73 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%%timeit
mask = d1['A'].values == 7
pd.DataFrame(d1.values[mask], d1.index[mask], d1.columns)
87 µs ± 5.12 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
对战
mask
我们把时间缩短了一半。
pd.Series.isin
替代3
@unutbu还向我们展示了如何使用df['A']
来计算'foo'
中每个元素的值。如果我们的值集是一个值的集合,即mask = df['A'].isin(['foo'])
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
,则计算结果相同。但如果需要,它还可以推广包括更大的值集。事实证明,尽管这是一个更通用的解决方案,但仍然相当快。对于那些不熟悉这个概念的人来说,唯一真正的损失是直观的。
numpy
然而,和以前一样,我们可以利用np.in1d
来提高性能,同时几乎不牺牲任何东西。我们将使用mask = np.in1d(df['A'].values, ['foo'])
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
1.0
<强>时序强>
我还要包括其他帖子中提到的其他概念以供参考
以下代码
此表中的每个列表示一个不同长度的数据框,我们在其上测试每个函数。每列显示相对时间,最快的函数给定基本索引为res.div(res.min())
10 30 100 300 1000 3000 10000 30000
mask_standard 2.156872 1.850663 2.034149 2.166312 2.164541 3.090372 2.981326 3.131151
mask_standard_loc 1.879035 1.782366 1.988823 2.338112 2.361391 3.036131 2.998112 2.990103
mask_with_values 1.010166 1.000000 1.005113 1.026363 1.028698 1.293741 1.007824 1.016919
mask_with_values_loc 1.196843 1.300228 1.000000 1.000000 1.038989 1.219233 1.037020 1.000000
query 4.997304 4.765554 5.934096 4.500559 2.997924 2.397013 1.680447 1.398190
xs_label 4.124597 4.272363 5.596152 4.295331 4.676591 5.710680 6.032809 8.950255
mask_with_isin 1.674055 1.679935 1.847972 1.724183 1.345111 1.405231 1.253554 1.264760
mask_with_in1d 1.000000 1.083807 1.220493 1.101929 1.000000 1.000000 1.000000 1.144175
。
mask_with_values
您会注意到mask_with_in1d
和res.T.plot(loglog=True)
之间似乎共享最快的时间
def mask_standard(df):
mask = df['A'] == 'foo'
return df[mask]
def mask_standard_loc(df):
mask = df['A'] == 'foo'
return df.loc[mask]
def mask_with_values(df):
mask = df['A'].values == 'foo'
return df[mask]
def mask_with_values_loc(df):
mask = df['A'].values == 'foo'
return df.loc[mask]
def query(df):
return df.query('A == "foo"')
def xs_label(df):
return df.set_index('A', append=True, drop=False).xs('foo', level=-1)
def mask_with_isin(df):
mask = df['A'].isin(['foo'])
return df[mask]
def mask_with_in1d(df):
mask = np.in1d(df['A'].values, ['foo'])
return df[mask]
功能
res = pd.DataFrame(
index=[
'mask_standard', 'mask_standard_loc', 'mask_with_values', 'mask_with_values_loc',
'query', 'xs_label', 'mask_with_isin', 'mask_with_in1d'
],
columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
dtype=float
)
for j in res.columns:
d = pd.concat([df] * j, ignore_index=True)
for i in res.index:a
stmt = '{}(d)'.format(i)
setp = 'from __main__ import d, {}'.format(i)
res.at[i, j] = timeit(stmt, setp, number=50)
测试
dtype
特殊时间
查看我们对整个数据框有一个非对象spec.div(spec.min())
10 30 100 300 1000 3000 10000 30000
mask_with_values 1.009030 1.000000 1.194276 1.000000 1.236892 1.095343 1.000000 1.000000
mask_with_in1d 1.104638 1.094524 1.156930 1.072094 1.000000 1.000000 1.040043 1.027100
reconstruct 1.000000 1.142838 1.000000 1.355440 1.650270 2.222181 2.294913 3.406735
的特殊情况。
以下代码
spec.T.plot(loglog=True)
事实证明,重建并不值得过几百行。
np.random.seed([3,1415])
d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))
def mask_with_values(df):
mask = df['A'].values == 'foo'
return df[mask]
def mask_with_in1d(df):
mask = np.in1d(df['A'].values, ['foo'])
return df[mask]
def reconstruct(df):
v = df.values
mask = np.in1d(df['A'].values, ['foo'])
return pd.DataFrame(v[mask], df.index[mask], df.columns)
spec = pd.DataFrame(
index=['mask_with_values', 'mask_with_in1d', 'reconstruct'],
columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
dtype=float
)
功能
for j in spec.columns:
d = pd.concat([df] * j, ignore_index=True)
for i in spec.index:
stmt = '{}(d)'.format(i)
setp = 'from __main__ import d, {}'.format(i)
spec.at[i, j] = timeit(stmt, setp, number=50)
测试
{{1}}
答案 3 :(得分:50)
我发现以前答案的语法是多余的,难以记住。熊猫在v0.13中引入了df.query('col == val')
方法,我更喜欢它。对于您的问题,您可以执行In [167]: n = 10
In [168]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
In [169]: df
Out[169]:
a b c
0 0.687704 0.582314 0.281645
1 0.250846 0.610021 0.420121
2 0.624328 0.401816 0.932146
3 0.011763 0.022921 0.244186
4 0.590198 0.325680 0.890392
5 0.598892 0.296424 0.007312
6 0.634625 0.803069 0.123872
7 0.924168 0.325076 0.303746
8 0.116822 0.364564 0.454607
9 0.986142 0.751953 0.561512
# pure python
In [170]: df[(df.a < df.b) & (df.b < df.c)]
Out[170]:
a b c
3 0.011763 0.022921 0.244186
8 0.116822 0.364564 0.454607
# query
In [171]: df.query('(a < b) & (b < c)')
Out[171]:
a b c
3 0.011763 0.022921 0.244186
8 0.116822 0.364564 0.454607
转载自http://pandas.pydata.org/pandas-docs/version/0.17.0/indexing.html#indexing-query
@
您还可以通过添加exclude = ('red', 'orange')
df.query('color not in @exclude')
。
{{1}}
答案 4 :(得分:16)
使用numpy.where可以获得更快的结果。
例如,使用unubtu's setup -
In [76]: df.iloc[np.where(df.A.values=='foo')]
Out[76]:
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
时间比较:
In [68]: %timeit df.iloc[np.where(df.A.values=='foo')] # fastest
1000 loops, best of 3: 380 µs per loop
In [69]: %timeit df.loc[df['A'] == 'foo']
1000 loops, best of 3: 745 µs per loop
In [71]: %timeit df.loc[df['A'].isin(['foo'])]
1000 loops, best of 3: 562 µs per loop
In [72]: %timeit df[df.A=='foo']
1000 loops, best of 3: 796 µs per loop
In [74]: %timeit df.query('(A=="foo")') # slowest
1000 loops, best of 3: 1.71 ms per loop
答案 5 :(得分:15)
这是一个简单的例子
from pandas import DataFrame
# Create data set
d = {'Revenue':[100,111,222],
'Cost':[333,444,555]}
df = DataFrame(d)
# mask = Return True when the value in column "Revenue" is equal to 111
mask = df['Revenue'] == 111
print mask
# Result:
# 0 False
# 1 True
# 2 False
# Name: Revenue, dtype: bool
# Select * FROM df WHERE Revenue = 111
df[mask]
# Result:
# Cost Revenue
# 1 444 111
答案 6 :(得分:13)
.query
与pandas >= 0.25.0
结合使用具有更大的灵活性:2019年8月更新的答案
自pandas >= 0.25.0
起,我们可以使用query
方法来过滤带有pandas方法甚至带有空格的列名的数据框。通常,列名中的空格会产生错误,但是现在我们可以使用反引号(`)来解决该问题,请参见GitHub:
# Example dataframe
df = pd.DataFrame({'Sender email':['ex@example.com', "reply@shop.com", "buy@shop.com"]})
Sender email
0 ex@example.com
1 reply@shop.com
2 buy@shop.com
将.query
与方法str.endswith
一起使用:
df.query('`Sender email`.str.endswith("@shop.com")')
输出
Sender email
1 reply@shop.com
2 buy@shop.com
我们也可以在查询中以@
作为前缀来使用局部变量:
domain = 'shop.com'
df.query('`Sender email`.str.endswith(@domain)')
输出
Sender email
1 reply@shop.com
2 buy@shop.com
答案 7 :(得分:7)
仅为pandas中的给定值选择多列中的特定列:
select col_name1, col_name2 from table where column_name = some_value.
选项:
df.loc[df['column_name'] == some_value][[col_name1, col_name2]]
或
df.query['column_name' == 'some_value'][[col_name1, col_name2]]
答案 8 :(得分:7)
在较新版本的 Pandas 中,受文档 (Viewing data) 启发:
df[df["colume_name"] == some_value] #Scalar, True/False..
df[df["colume_name"] == "some_value"] #String
通过将子句放在括号 ()
中并将它们与 &
和 |
(和/或)组合来组合多个条件。像这样:
df[(df["colume_name"] == "some_value1") & (pd[pd["colume_name"] == "some_value2"])]
其他过滤器
pandas.notna(df["colume_name"]) == True # Not NaN
df['colume_name'].str.contains("text") # Search for "text"
df['colume_name'].str.lower().str.contains("text") # Search for "text", after converting to lowercase
答案 9 :(得分:6)
要附加到这个着名的问题(虽然有点太晚了):您也可以df.groupby('column_name').get_group('column_desired_value').reset_index()
创建具有特定值的指定列的新数据框。 E.g。
import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)
b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1)
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)
运行此命令:
Original dataframe:
A B
0 foo one
1 bar one
2 foo two
3 bar three
4 foo two
5 bar two
6 foo one
7 foo three
Sub dataframe where B is two:
A B
0 foo two
1 foo two
2 bar two
答案 10 :(得分:1)
您还可以使用.apply:
df.apply(lambda row: row[df['B'].isin(['one','three'])])
它实际上是逐行工作的(即,将函数应用于每一行)。
输出为
A B C D
0 foo one 0 0
1 bar one 1 2
3 bar three 3 6
6 foo one 6 12
7 foo three 7 14
结果与@unutbu提及的使用结果相同
df[[df['B'].isin(['one','three'])]]