为什么33791st prime(399137)会导致分段错误?

时间:2013-06-11 17:02:33

标签: c segmentation-fault dynamic-memory-allocation

很明显,数字399137及其自身不会导致分段错误,但我的程序在同一计算中始终崩溃。它计算Euler的totient(phi function)的值,从2到给定的限制(默认为1,000,000)。它是通过保留一个线性排序的素数列表来实现的,这些素数来自先前计算的欧拉总数。当尝试将33791st素数(339137)添加到素数列表时,会导致分段错误。注意在此计算中不会重新分配内存。我尝试使用gdb找到问题,并指出将素数添加到列表中的行(见下文)。

要存储低于100万的所有素数,我的程序将动态分配8192*10*4字节(320KB)。要求大量连续的记忆对我来说似乎没有问题。

那么为什么我的程序在尝试将339137添加到素数列表时始终存在分段错误?这种分段错误的原因是什么?

C Code:

#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>

uint32_t phi       (uint32_t n, uint32_t *primes, uint32_t *count, uint32_t *size);
uint32_t gcd_bin   (uint32_t u, uint32_t v);
uint32_t isPrime   (uint32_t n, uint32_t *primes, uint32_t *count, uint32_t *size);
void     addPrime  (uint32_t n, uint32_t *primes, uint32_t *count, uint32_t *size);
uint32_t isInArr   (uint32_t n, uint32_t *primes, uint32_t count);
uint32_t expand_arr(uint32_t **arr, uint32_t *size);
void     print_arr (uint32_t  *arr, uint32_t count);
uint32_t print_help(char* str);

int main(int argc, char* argv[]) {
  uint32_t z=1000000;         //default
  uint32_t count=0,size = 10; //default
  uint32_t i,n;
//  uint32_t x,y; //max numerator & denominator of ratio
  uint32_t *primes = malloc(size * sizeof(uint32_t));

  if(argc > 1 && !strcmp(argv[1],"--help")) { return print_help(argv[0]); }
  if(argc > 1) {  sscanf(argv[1],"%u",&z); }

  uint32_t old=size;
  for(i=2,/*x=y=1,*/count=0; i<=z; ++i) {
    n = phi(i,primes,&count,&size);
    fprintf(stderr,"\ni=%u phi(i)=%u\t: c=%u s=%u ",i,n,count,size);
  }
//  printf("%u/%u\n",x,y);
  return 0;
}

uint32_t phi(uint32_t n, uint32_t *primes, uint32_t *count, uint32_t *size) {
  uint32_t i,bound;
  // Base case
  if(n < 2)
    return 0;
  // Is Prime? (Lehmer's conjecture)
  if(isPrime(n,primes,count,size))
    return n-1;
  // Even number?
  if((n & 1) == 0 ) {
    int m = n >> 1;
    return ~m & 1 ? phi(m,primes,count,size)<<1 : phi(m,primes,count,size);
  }
  // Find (smallest) prime factor using list of primes
  for(i=0,bound=(uint32_t)sqrt(n); primes[i] < bound && i<*count && (n%primes[i])!=0; ++i);
  uint32_t m = primes[i];
  uint32_t o = n/m;
  uint32_t d = gcd_bin(m, o);
  return d==1 ? phi(m,primes,count,size)*phi(o,primes,count,size)
              : phi(m,primes,count,size)*phi(o,primes,count,size)*(d/phi(d,primes,count,size));
}

uint32_t isPrime(uint32_t n, uint32_t *primes, uint32_t *count, uint32_t *size) {
  uint32_t i,prime,bound;
  for(i=0,prime=1,bound=(uint32_t)sqrt(n)+1; prime && i<*count && primes[i]<=bound; ++i)
    prime = n%primes[i];
  if(prime)
    addPrime(n,primes,count,size);
  return prime;
}

void addPrime(uint32_t n, uint32_t *primes, uint32_t *count, uint32_t *size) {
  if(*count >= *size) {
    if(!expand_arr(&primes,size)) {
      fprintf(stderr,"dying gracefully!");
      exit(1); //realloc failure
    }
  }
  if(!isInArr(n,primes,*count))
    primes[(*count)++] = n; /* ERROR IS HERE APPARENTLY */
}

uint32_t expand_arr(uint32_t **primes, uint32_t *size) {
  *size  *= 2;
  *primes = realloc(*primes, *size * sizeof(uint32_t));
  return *primes!=NULL;
}

uint32_t isInArr(uint32_t n, uint32_t *primes, uint32_t count) {
  uint32_t hi,low,mid,val;
  low = 0; hi = count; // set bounds
  while(low < hi) {    // binary search
    mid = low/2 + hi/2;
    val = primes[mid];
    if(val == n) return  1;
    if(val >  n) hi  = mid;
    if(val <  n) low = mid+1;
  }
  return 0;
}

void print_arr(uint32_t *arr, uint32_t count) {
  uint32_t i;
  for(i=0; i<count; ++i)
    printf("%u,",arr[i]);
  printf("\n");
}

uint32_t gcd_bin(uint32_t u, uint32_t v) {
    /* simple cases (termination) */
    if(u == v)  return u;
    if(u == 0)  return v;
    if(v == 0)  return u;
    /* look for even numbers  */
    if( ~u & 1) {
      if(v & 1) return gcd_bin(u >> 1, v);           /* u is even, v is odd  */
      else      return gcd_bin(u >> 1, v >> 1) << 1; /* u is even, v is even */
    }
    if( ~v & 1) return gcd_bin(u, v >> 1);           /* u is odd,  v is even */
    /* reduce larger argument */                     /* u is odd,  v is odd  */
    return (u > v) ? gcd_bin((u - v) >> 1, v)
                   : gcd_bin((v - u) >> 1, u);
}

uint32_t print_help(char* str) {
  printf("  Usage: %s <limit> \n",str);
  printf("  Calculates the values of euler's totient (phi fnction) \n");
  printf("  from 2 to <limit> inclusively\n");
  printf("  * limit : a decimal number\n");
  printf("          : default = 1000000\n");
  return 0;
}

1 个答案:

答案 0 :(得分:4)

首先,找到此类错误的最佳工具是valgrind。忽略所有选项,只需将其作为valgrind ./a.out运行,然后修复它报告的第一个问题。重复,直到程序正常运行。

现在,在这种情况下,代码检查对我来说很明显,因为我知道要查找什么。在valgrind的帮助下,我通过调试大量的这些问题来学习寻找什么。 Valgrind是你的朋友。使用它。

uint32_t expand_arr(uint32_t **arr, uint32_t *size);

此函数展开arr参数指向的指针所指向的数组,用新指针覆盖旧指针。

void addPrime(uint32_t n, uint32_t *primes, uint32_t *count, uint32_t *size) {
  if(*count >= *size) {
    if(!expand_arr(&primes,size)) {

此函数在expand_arr指针上调用primes,这是一个函数参数,因此是调用者已知指针的副本。当expand_arr更改primes时,会影响addPrime中的副本,而不是其来电者的副本;调用者的指针指向释放的内存。

事实上,primes作为函数参数进行了线程化,一直通过isPrimephi添加到main。所有这些函数都需要传递primes作为指针的指针,就像expand_arr已经做的那样,这样当expand_arr调用realloc时,不会留下过时的指针。

以下是valgrind如何告诉你这是问题所在:

i=29 phi(i)=28  : c=10 s=10 ==17052== Invalid read of size 4
==17052==    at 0x4009D5: isPrime (test.c:59)
==17052==    by 0x400BC4: phi (test.c:41)
==17052==    by 0x400DCB: main (test.c:28)
==17052==  Address 0x54de040 is 0 bytes inside a block of size 40 free'd
==17052==    at 0x4C2C03E: realloc (vg_replace_malloc.c:662)
==17052==    by 0x4008C9: expand_arr (test.c:79)
==17052==    by 0x400968: addPrime (test.c:68)
==17052==    by 0x400A07: isPrime (test.c:62)
==17052==    by 0x400BC4: phi (test.c:41)
==17052==    by 0x400C50: phi (test.c:53)
==17052==    by 0x400DCB: main (test.c:28)

注意它是如何指向isPrime作为“无效读取”的位置,并且它直接告诉你,你所拥有的是一个陈旧的指向解除分配的内存(“块内的0字节”大小40 free'd“) - 并且它在主循环的迭代29中发现了问题。