我有以下代码从主机变量复制到CUDA中的__constant__
变量
int main(int argc, char **argv){
int exit_code;
if (argc < 4) {
std::cout << "Usage: \n " << argv[0] << " <input> <output> <nColors>" << std::endl;
return 1;
}
Color *h_input;
int h_rows, h_cols;
timer1.Start();
exit_code = readText2RGB(argv[1], &h_input, &h_rows, &h_cols);
timer1.Stop();
std::cout << "Reading: " << timer1.Elapsed() << std::endl;
if (exit_code != SUCCESS){
std::cout << "Error trying to read file." << std::endl;
return FAILURE;
}
CpuTimer timer1;
GpuTimer timer2;
float timeStep2 = 0, timeStep3 = 0;
int h_numColors = atoi(argv[3]);
int h_change = 0;
int *h_pixelGroup = new int[h_rows*h_cols];
Color *h_groupRep = new Color[h_numColors];
Color *h_output = new Color[h_rows*h_cols];
Color *d_input;
int *d_pixelGroup;
Color *d_groupRep;
Color *d_output;
dim3 block(B_WIDTH, B_HEIGHT);
dim3 grid((h_cols+B_WIDTH-1)/B_WIDTH, (h_rows+B_HEIGHT-1)/B_HEIGHT);
checkCudaError(cudaMalloc((void**)&d_input, sizeof(Color)*h_rows*h_cols));
checkCudaError(cudaMalloc((void**)&d_pixelGroup, sizeof(int)*h_rows*h_cols));
checkCudaError(cudaMalloc((void**)&d_groupRep, sizeof(Color)*h_numColors));
checkCudaError(cudaMalloc((void**)&d_output, sizeof(Color)*h_rows*h_cols));
// STEP 1
//Evenly distribute all pixels of the image onto the color set
timer2.Start();
checkCudaError(cudaMemcpyToSymbol(c_rows, &h_rows, sizeof(int)));
checkCudaError(cudaMemcpyToSymbol(c_cols, &h_cols, sizeof(int)));
checkCudaError(cudaMemcpyToSymbol(c_numColors, &h_numColors, sizeof(int)));
checkCudaError(cudaMemcpy(d_input, h_input, sizeof(Color)*h_rows*h_cols, cudaMemcpyHostToDevice));
clut_distributePixels<<<grid, block>>>(d_pixelGroup);
checkCudaError(cudaMemcpy(h_pixelGroup, d_pixelGroup, sizeof(int)*h_rows*h_cols, cudaMemcpyDeviceToHost));
timer2.Stop();
std::cout << "Phase 1: " << timer2.Elapsed() << std::endl;
std::cout << h_pixelGroup[0] << ","
<< h_pixelGroup[3] << ","
<< h_pixelGroup[4] << ","
<< h_pixelGroup[7] << ","
<< h_pixelGroup[8] << std::endl;
//Do the STEP 2 and STEP 3 as long as there is at least one change of representative in a group
do {
// STEP 2
//Set the representative value to the average colour of all pixels in the same set
timer1.Start();
for (int ng = 0; ng < h_numColors; ng++) {
int r = 0, g = 0, b = 0;
int elem = 0;
for (int i = 0; i < h_rows; i++) {
for (int j = 0; j < h_cols; j++) {
if (h_pixelGroup[i*h_cols+j] == ng) {
r += h_input[i*h_cols+j].r;
g += h_input[i*h_cols+j].g;
b += h_input[i*h_cols+j].b;
elem++;
}
}
}
if (elem == 0) {
h_groupRep[ng].r = 255;
h_groupRep[ng].g = 255;
h_groupRep[ng].b = 255;
}else{
h_groupRep[ng].r = r/elem;
h_groupRep[ng].g = g/elem;
h_groupRep[ng].b = b/elem;
}
}
timer1.Stop();
timeStep2 += timer1.Elapsed();
// STEP 3
//For each pixel in the image, compute Euclidean's distance to each representative
//and assign it to the set which is closest
h_change = 0;
timer2.Start();
checkCudaError(cudaMemcpyToSymbol(d_change, &h_change, sizeof(int)));
checkCudaError(cudaMemcpy(d_groupRep, h_groupRep, sizeof(Color)*h_numColors, cudaMemcpyHostToDevice));
clut_checkDistances<<<grid, block>>>(d_input, d_pixelGroup, d_groupRep);
checkCudaError(cudaMemcpy(h_pixelGroup, d_pixelGroup, sizeof(int)*h_rows*h_cols, cudaMemcpyDeviceToHost));
checkCudaError(cudaMemcpyFromSymbol(&h_change, d_change, sizeof(int)));
timer2.Stop();
timeStep3 += timer2.Elapsed();
std::cout << "Chunche" << std::endl;
} while (h_change == 1);
std::cout << "Phase 2: " << timeStep2 << std::endl;
std::cout << "Phase 3: " << timeStep3 << std::endl;
// STEP 4
//Create the new image with the resulting color lookup table
timer2.Start();
clut_createImage<<<grid, block>>>(d_output, d_pixelGroup, d_groupRep);
checkCudaError(cudaMemcpy(h_output, d_output, sizeof(Color)*h_rows*h_cols, cudaMemcpyDeviceToHost));
timer2.Stop();
std::cout << "Phase 4: " << timer2.Elapsed() << std::endl;
checkCudaError(cudaFree(d_input));
checkCudaError(cudaFree(d_pixelGroup));
checkCudaError(cudaFree(d_groupRep));
checkCudaError(cudaFree(d_output));
timer1.Start();
exit_code = writeRGB2Text(argv[2], h_input, h_rows, h_cols);
timer1.Stop();
std::cout << "Writing: " << timer1.Elapsed() << std::endl;
delete[] h_pixelGroup;
delete[] h_groupRep;
delete[] h_output;
return SUCCESS;
}
当我从内核中打印时,我得到了三个值的零
__global__
void clut_distributePixels(int *pixelGroup){
int i = blockDim.y * blockIdx.y + threadIdx.y;
int j = blockDim.x * blockIdx.x + threadIdx.x;
if(i == 0 && j == 0){
printf("a: %d\n", c_rows);
printf("b: %d\n", c_cols);
printf("c: %d\n", c_numColors);
}
while (i < c_rows) {
while (j < c_cols) {
pixelGroup[i*c_cols+j] = (i*c_cols+j)/c_numColors;
j += gridDim.x * blockDim.x;
}
j = blockDim.x * blockIdx.x + threadIdx.x;
i += gridDim.y * blockDim.y;
}
}
要么我没有正确地复制到恒定的记忆中......或者我不知道什么是错的。任何建议!? 我发布了整个主机代码,可能是其他东西弄乱了常量副本。
更新
Main.cu
#include "Imageproc.cuh"
int main(){
int h_change = 0;
int h_rows = 512;
cudaMemcpyToSymbol(c_rows, &h_rows, sizeof(int));
chunche<<<1,1>>>();
cudaMemcpyFromSymbol(&h_change, d_change, sizeof(int));
std::cout << "H = " << h_change << std::endl;
return 0
}
Imageproc.cuh
#ifndef _IMAGEPROC_CUH_
#define _IMAGEPROC_CUH_
#include "Utilities.cuh"
#define B_WIDTH 16
#define B_HEIGHT 16
__constant__ int c_rows;
__constant__ int c_cols;
__constant__ int c_numColors;
__device__ int d_change;
#ifdef __cplusplus
extern "C"
{
#endif
__global__
void chunche();
__global__
void clut_distributePixels(int *pixelGroup);
__global__
void clut_checkDistances(Color *input, int *pixelGroup, Color *groupRep);
__global__
void clut_createImage(Color *clutImage, int *pixelGroup, Color *groupRep);
#ifdef __cplusplus
}
#endif
#endif
Imageproc.cu
#include "Imageproc.cuh"
__global__
void chunche(){
d_change = c_rows + 1;
}
__global__
void clut_distributePixels(int *pixelGroup){
int i = blockDim.y * blockIdx.y + threadIdx.y;
int j = blockDim.x * blockIdx.x + threadIdx.x;
while (i < c_rows) {
while (j < c_cols) {
pixelGroup[i*c_cols+j] = (i*c_cols+j)/c_numColors;
j += gridDim.x * blockDim.x;
}
j = blockDim.x * blockIdx.x + threadIdx.x;
i += gridDim.y * blockDim.y;
}
}
__global__
void clut_checkDistances(Color *input, int *pixelGroup, Color *groupRep){
int i = blockDim.y * blockIdx.y + threadIdx.y;
int j = blockDim.x * blockIdx.x + threadIdx.x;
int newGroup;
while (i < c_rows) {
while (j < c_cols) {
newGroup = 0;
for (int ng = 1; ng < c_numColors; ng++) {
if (
/*If distance from color to group ng is less than distance from color to group idx
then color should belong to ng*/
(groupRep[ng].r-input[i*c_cols+j].r)*(groupRep[ng].r-input[i*c_cols+j].r) +
(groupRep[ng].g-input[i*c_cols+j].g)*(groupRep[ng].g-input[i*c_cols+j].g) +
(groupRep[ng].b-input[i*c_cols+j].b)*(groupRep[ng].b-input[i*c_cols+j].b)
<
(groupRep[newGroup].r-input[i*c_cols+j].r)*(groupRep[newGroup].r-input[i*c_cols+j].r)+
(groupRep[newGroup].g-input[i*c_cols+j].g)*(groupRep[newGroup].g-input[i*c_cols+j].g)+
(groupRep[newGroup].b-input[i*c_cols+j].b)*(groupRep[newGroup].b-input[i*c_cols+j].b)
)
{
newGroup = ng;
}
}
if (pixelGroup[i*c_cols+j] != newGroup) {
pixelGroup[i*c_cols+j] = newGroup;
d_change = 1;
}
j += gridDim.x * blockDim.x;
}
j = blockDim.x * blockIdx.x + threadIdx.x;
i += gridDim.y * blockDim.y;
}
}
__global__
void clut_createImage(Color *clutImage, int *pixelGroup, Color *groupRep){
int i = blockDim.y * blockIdx.y + threadIdx.y;
int j = blockDim.x * blockIdx.x + threadIdx.x;
while (i < c_rows) {
while (j < c_cols) {
clutImage[i*c_cols+j].r = groupRep[pixelGroup[i*c_cols+j]].r;
clutImage[i*c_cols+j].g = groupRep[pixelGroup[i*c_cols+j]].g;
clutImage[i*c_cols+j].b = groupRep[pixelGroup[i*c_cols+j]].b;
j += gridDim.x * blockDim.x;
}
j = blockDim.x * blockIdx.x + threadIdx.x;
i += gridDim.y * blockDim.y;
}
}
Utilities.cuh
#ifndef _UTILITIES_CUH_
#define _UTILITIES_CUH_
#include <iostream>
#include <fstream>
#include <string>
#define SUCCESS 1
#define FAILURE 0
#define checkCudaError(val) check( (val), #val, __FILE__, __LINE__)
typedef struct {
int r;
int g;
int b;
} vec3u;
typedef vec3u Color;
typedef unsigned char uchar;
typedef uchar Grayscale;
struct GpuTimer{
cudaEvent_t start;
cudaEvent_t stop;
GpuTimer(){
cudaEventCreate(&start);
cudaEventCreate(&stop);
}
~GpuTimer(){
cudaEventDestroy(start);
cudaEventDestroy(stop);
}
void Start(){
cudaEventRecord(start, 0);
}
void Stop(){
cudaEventRecord(stop, 0);
}
float Elapsed(){
float elapsed;
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsed, start, stop);
return elapsed;
}
};
template<typename T>
void check(T err, const char* const func, const char* const file, const int line) {
if (err != cudaSuccess) {
std::cerr << "CUDA error at: " << file << ":" << line << std::endl;
std::cerr << cudaGetErrorString(err) << " " << func << std::endl;
exit(1);
}
}
int writeGrayscale2Text(const std::string filename, const Grayscale *image, const int rows, const int cols);
int readText2Grayscale(const std::string filename, Grayscale **image, int *rows, int *cols);
int writeRGB2Text(const std::string filename, const Color *image, const int rows, const int cols);
int readText2RGB(const std::string filename, Color **image, int *rows, int *cols);
struct CpuTimer{
clock_t start;
clock_t stop;
void Start(){
start = clock();
}
void Stop(){
stop = clock();
}
float Elapsed(){
return ((float)stop-start)/CLOCKS_PER_SEC * 1000.0f;
}
};
#endif
Utilities.cu
#include "Utilities.cuh"
int writeGrayscale2Text(const std::string filename, const Grayscale *image, const int rows, const int cols){
std::ofstream fileWriter(filename.c_str());
if (!fileWriter.is_open()) {
std::cerr << "** writeGrayscale2Text() ** : Unable to open file." << std::endl;
return FAILURE;
}
fileWriter << rows << "\n";
fileWriter << cols << "\n";
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
fileWriter << (int)image[i*cols+j] << "\n";
}
}
fileWriter.close();
return SUCCESS;
}
int readText2Grayscale(const std::string filename, Grayscale **image, int *rows, int *cols){
std::ifstream fileReader(filename.c_str());
if (!fileReader.is_open()) {
std::cerr << "** readText2Grayscale() ** : Unable to open file." << std::endl;
return FAILURE;
}
fileReader >> *rows;
fileReader >> *cols;
*image = new Grayscale[(*rows)*(*cols)];
int value;
for (int i = 0; i < *rows; i++) {
for (int j = 0; j < *cols; j++) {
fileReader >> value;
(*image)[i*(*cols)+j] = (Grayscale)value;
}
}
fileReader.close();
return SUCCESS;
}
int writeRGB2Text(const std::string filename, const Color *image, const int rows, const int cols){
std::ofstream fileWriter(filename.c_str());
if (!fileWriter.is_open()) {
std::cerr << "** writeRGB2Text() ** : Unable to open file." << std::endl;
return FAILURE;
}
fileWriter << rows << "\n";
fileWriter << cols << "\n";
for (int k = 0; k < 3; k++) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
switch (k) {
case 0:
fileWriter << image[i*cols+j].r << "\n";
break;
case 1:
fileWriter << image[i*cols+j].g << "\n";
break;
case 2:
fileWriter << image[i*cols+j].b << "\n";
break;
}
}
}
}
fileWriter.close();
return SUCCESS;
}
int readText2RGB(const std::string filename, Color **image, int *rows, int *cols){
std::ifstream fileReader(filename.c_str());
if (!fileReader.is_open()) {
std::cerr << "** readText2Grayscale() ** : Unable to open file." << std::endl;
return FAILURE;
}
fileReader >> *rows;
fileReader >> *cols;
*image = new Color[(*rows)*(*cols)];
for (int k = 0; k < 3; k++) {
for (int i = 0; i < *rows; i++) {
for (int j = 0; j < *cols; j++) {
switch (k) {
case 0:
fileReader >> (*image)[i*(*cols)+j].r;
break;
case 1:
fileReader >> (*image)[i*(*cols)+j].g;
break;
case 2:
fileReader >> (*image)[i*(*cols)+j].b;
break;
}
}
}
}
fileReader.close();
return SUCCESS;
}
答案 0 :(得分:4)
常量内存具有隐式本地范围链接 - answer to this on stack overflow。
这意味着cudaMemcpyToSymbol
必须位于要使用它的内核的同一生成的.obj文件中。
您在Main.cu
中进行了memcopy,但使用您的常驻内存的内核位于Imageproc.cu
。因此,内核chunche
的常量值是未知的。
解决问题的一个选项可以是,实现一个包装器。只需在执行Imagepro.cu
的{{1}}中添加一个函数,然后在cudaMemcpyToSymbol
中调用包装器,并在那里传递所需的常量内存值。