我决定创建自己的WritableComparable类来了解Hadoop如何使用它。所以我创建了一个带有两个实例变量(orderNumber cliente)的Order类,并实现了所需的方法。我还将Eclipse生成器用于getter / setter / hashCode / equals / toString。
在compareTo中,我决定只使用orderNumber变量。
我创建了一个简单的MapReduce作业,仅用于计算数据集中订单的出现次数。错误地,我的一个测试记录是Ita而不是Itá,你可以在这里看到:
123 Ita
123 Itá
123 Itá
345 Carol
345 Carol
345 Carol
345 Carol
456 Iza Smith
据我所知,第一条记录应该被视为不同的顺序,因为记录1的hashCode与记录2和3的hashCode不同。
但是在减少阶段,3条记录被组合在一起。正如你在这里看到的那样:
Order [cliente=Ita, orderNumber=123] 3
Order [cliente=Carol, orderNumber=345] 4
Order [cliente=Iza Smith, orderNumber=456] 1
我认为Itá记录应该有一行,计数为2,而Ita应该有1个。
因为我在compareTo中只使用了orderNumber,所以我尝试在此方法中使用String cliente(在下面的代码中作了评论)。然后,它按照我的预期工作。
那么,这是预期的结果吗?不应该只使用hashCode来对密钥及其值进行分组吗?
这是Order类(我省略了getters / setters):
public class Order implements WritableComparable<Order>
{
private String cliente;
private long orderNumber;
@Override
public void readFields(DataInput in) throws IOException
{
cliente = in.readUTF();
orderNumber = in.readLong();
}
@Override
public void write(DataOutput out) throws IOException
{
out.writeUTF(cliente);
out.writeLong(orderNumber);
}
@Override
public int compareTo(Order o) {
long thisValue = this.orderNumber;
long thatValue = o.orderNumber;
return (thisValue < thatValue ? -1 :(thisValue == thatValue ? 0 :1));
//return this.cliente.compareTo(o.cliente);
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + ((cliente == null) ? 0 : cliente.hashCode());
result = prime * result + (int) (orderNumber ^ (orderNumber >>> 32));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Order other = (Order) obj;
if (cliente == null) {
if (other.cliente != null)
return false;
} else if (!cliente.equals(other.cliente))
return false;
if (orderNumber != other.orderNumber)
return false;
return true;
}
@Override
public String toString() {
return "Order [cliente=" + cliente + ", orderNumber=" + orderNumber + "]";
}
这是MapReduce代码:
public class TesteCustomClass extends Configured implements Tool
{
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Order, LongWritable>
{
LongWritable outputValue = new LongWritable();
String[] campos;
Order order = new Order();
@Override
public void configure(JobConf job)
{
}
@Override
public void map(LongWritable key, Text value, OutputCollector<Order, LongWritable> output, Reporter reporter) throws IOException
{
campos = value.toString().split("\t");
order.setOrderNumber(Long.parseLong(campos[0]));
order.setCliente(campos[1]);
outputValue.set(1L);
output.collect(order, outputValue);
}
}
public static class Reduce extends MapReduceBase implements Reducer<Order, LongWritable, Order,LongWritable>
{
@Override
public void reduce(Order key, Iterator<LongWritable> values,OutputCollector<Order,LongWritable> output, Reporter reporter) throws IOException
{
LongWritable value = new LongWritable(0);
while (values.hasNext())
{
value.set(value.get() + values.next().get());
}
output.collect(key, value);
}
}
@Override
public int run(String[] args) throws Exception {
JobConf conf = new JobConf(getConf(),TesteCustomClass.class);
conf.setMapperClass(Map.class);
// conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setJobName("Teste - Custom Classes");
conf.setOutputKeyClass(Order.class);
conf.setOutputValueClass(LongWritable.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
return 0;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(),new TesteCustomClass(),args);
System.exit(res);
}
}
答案 0 :(得分:4)
默认分区程序是HashPartitioner
,它使用hashCode
方法确定将K,V对发送到哪个reducer。
一旦进入reducer(或者如果你使用的是运行map侧的Combiner),compareTo
方法用于对键进行排序,然后还使用(默认情况下)来比较顺序键是否应该被组合在一起并且它们的相关值在同一次迭代中减少。
如果您的cliente
方法中未使用orderNumber
密钥变量且仅使用compareTo
变量,则具有相同orderNumber
的任何密钥都将具有其值减少在一起 - 无论cliente
值(您目前正在观察的是什么)