我的索引技能并没有达到标准,而且我正在努力解决这个问题。
我有以下设置:
import pandas as pd
import numpy as np
index = pd.bdate_range('2012-1-1', periods=250)
df1 = pd.DataFrame(np.random.rand(250,4), index=index, columns=[1, 2, 3, 4])
df2 = pd.DataFrame(np.random.rand(250,4), index=index, columns=[1, 2, 3, 4])
df = pd.concat({'A': df1, 'B': df2}, axis=1)
group = df.groupby([lambda x: x.year, lambda x: x.month])
我看到最大的没有。我的团队中的工作日(即(年,月)组合)是23:
In [257]: group.size().max()
Out[257]: 23
在每个月的第一个工作日(索引n = 0),我可以得到如下统计数据:
In [258]: group.nth(0).describe()
Out[258]:
A B \
1 2 3 4 1 2
count 12.000000 12.000000 12.000000 12.000000 12.000000 12.000000
mean 0.541559 0.491684 0.354012 0.448284 0.353839 0.408020
std 0.367662 0.242924 0.254447 0.248426 0.228194 0.220511
min 0.021792 0.110715 0.067677 0.074719 0.097227 0.116947
25% 0.144712 0.368966 0.144415 0.209418 0.189507 0.260863
50% 0.646160 0.439860 0.233370 0.472696 0.214474 0.370281
75% 0.865417 0.614928 0.587038 0.710450 0.529376 0.602299
max 0.963938 0.912865 0.766722 0.750037 0.778580 0.776627
3 4
count 12.000000 12.000000
mean 0.434197 0.588980
std 0.301113 0.287869
min 0.004253 0.064859
25% 0.262517 0.357484
50% 0.350605 0.653136
75% 0.676960 0.775588
max 0.991661 0.990118
我想要做的是在范围(23)中对n运行group.nth(n).describe(),并将结果保存为以下格式:
count mean std min 25% 50% 75% max
(col2, n, col1) 281 -0.004093 0.140578 -1.64 -0.04 -0.00 0.04 0.58
对于(col2,n,col1)的所有组合,其中col2是下栏名(1到4),n在范围(23)中,col1是上栏名(' A&#39) ;或者' B')。
非常感谢任何帮助 - 我将学习很多关于如何进行这些操作的知识。我有一些方法:
group.nth(0).describe().stack().T.stack()`
但是当我迭代n到22时,我会对它做一个哈希。
谢谢。
答案 0 :(得分:1)
你非常接近。您只需要使用索引从索引生成一个显式列表,将n
置于中间。然后,使用数据框列表,您可以直接使用concat
。
group = df.groupby([lambda x: x.year, lambda x: x.month])
dataframes = []
for n in range(23):
frame = group.nth(n).describe().T
frame.index = [(inner, n, outer) for outer, inner in frame.index]
dataframes.append(frame)
final_df = pd.concat(dataframes)