根据NEG和NEGU的定义,
NEG $X,Y,$Z (negate signed): s($X) := Y - s($Z).
NEGU $X,Y,$Z (negate unsigned): u($X) := (Y - u($Z)) mod 2^64.
我们假设$Z = s(-1)
或u(2^64 - 1)
。然后第一个操作码会在$X
时将值1放入Y = 0
寄存器,而最近的操作码会因u(-(2^64 - 1)) mod 2^64 = 1
而得到相同的结果。我对么? NEG
时,$Z = -2^63
指令是否会引发溢出异常?
答案 0 :(得分:1)
简短回答“当$ Z = -2 ^ 63时,NEG指令是否应该引发溢出异常?”
yes, but you probably already suspected that.
逻辑上,NEG $ X,0,-2 ^ 63应该给出2 ^ 63,这超出了有符号正整数的范围,因而溢出。但是,如果你像我一样,你需要证明实际上发生了整数溢出。这是:
t IS $255
LOC #20 //handle the integer overflow event
PUSHJ 255,Err
PUT rJ,$255
GET $255,rB
RESUME
LOC #100
Main SET t,#4000
PUT rA,t //set the integer overflow event bit
SETH $0,#8000
NEG $1,0,$0
GETA t,End
TRAP 0,Fputs,StdOut
TRAP 0,Halt,0
End BYTE "End of program",#a,0
Err SET $0,$255 //overflow subroutine, prints out message
GETA t,Emes
TRAP 0,Fputs,StdOut
GET t,rW
INCL t,4
PUT rW,t
SET $255,$0
POP 0,0
Emes BYTE "Error: integer overflow",#a,0