F#展平功能效率比较

时间:2013-06-06 05:53:23

标签: f# complexity-theory time-complexity asymptotic-complexity

我正在尝试比较这两个函数以查看哪个函数具有最佳算法。我一直在关注n复杂度的顺序,虽然我不知道如何以数学方式得出它(这是一种耻辱)但我有时会猜测它的顺序。我想要知道算法是否比另一个好,我需要从渐近时间,复杂性和实验方面来看待它们。

let flatten1 xs = List.fold (@) [] xs

let flatten2 xs = List.foldBack (@) xs []

我使用了F##time功能,这就是我得到的。

Real: 00:00:00.001, CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0
val it : int list =
  [1; 2; 3; 5; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19;
   20; 5; 4; 5; 6]
>
Real: 00:00:00.001, CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0
val it : int list =
  [1; 2; 3; 5; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19;
   20; 5; 4; 5; 6]

2 个答案:

答案 0 :(得分:5)

xs长度为n且每个操作f为O(1),List.fold f xsList.foldBack f xs具有相同的复杂度O(n)

然而,@比这更复杂。假设您在长度为flatten1的{​​{1}}上运行flatten2xs,其中每个元素都是长度为n的列表。结果列表的长度为m

由于n*m@,其中O(k)是第一个列表的长度,k的复杂性为:

flatten1

如果是// After each `@` call, the first list (the accumulator) increases its length by `m` O(m + 2*m + 3*m + ... + (n-1)*m) = O(n*(n-1)*m/2) ,则第一个列表始终是长度为flatten2的列表:

m

您可以轻松地看到O(m + m + ... + m) // n-1 steps = O((n-1)*m) flatten2更有效率。无论如何,时间复杂度的差异将主导flatten1的额外分配。为了说明,这是一个显示差异的快速测试

List.foldBack

请注意,您可以使用List.concat,这是let flatten1 xs = List.fold (@) [] xs let flatten2 xs = List.foldBack (@) xs [] let xs = [ for _ in 1..1000 -> [1..100] ] #time "on";; // Real: 00:00:01.456, CPU: 00:00:01.466, GC gen0: 256, gen1: 124, gen2: 1 let xs1 = flatten1 xs;; // Real: 00:00:00.007, CPU: 00:00:00.000, GC gen0: 1, gen1: 0, gen2: 0 let xs2 = flatten2 xs;; 函数的有效实现。

答案 1 :(得分:1)

如有疑问请查看来源(来自/src/fsharp/FSharp.Core/list.fs)

    // this version doesn't causes stack overflow - it uses a private stack 
    [<CompiledName("FoldBack")>]
    let foldBack<'T,'State> f (list:'T list) (acc:'State) = 
        let f = OptimizedClosures.FSharpFunc<_,_,_>.Adapt(f)
        match list with 
        | [] -> acc
        | [h] -> f.Invoke(h,acc)
        | [h1;h2] -> f.Invoke(h1,f.Invoke(h2,acc))
        | [h1;h2;h3] -> f.Invoke(h1,f.Invoke(h2,f.Invoke(h3,acc)))
        | [h1;h2;h3;h4] -> f.Invoke(h1,f.Invoke(h2,f.Invoke(h3,f.Invoke(h4,acc))))
        | _ -> 
            // It is faster to allocate and iterate an array than to create all those 
            // highly nested stacks.  It also means we won't get stack overflows here. 
            let arr = toArray list
            let arrn = arr.Length
            foldArraySubRight f arr 0 (arrn - 1) acc

并弃牌

    [<CompiledName("Fold")>]
    let fold<'T,'State> f (s:'State) (list: 'T list) = 
        match list with 
        | [] -> s
        | _ -> 
            let f = OptimizedClosures.FSharpFunc<_,_,_>.Adapt(f)
            let rec loop s xs = 
                match xs with 
                | [] -> s
                | h::t -> loop (f.Invoke(s,h)) t
            loop s list
从中我们可以看出两者具有相同的时间复杂度(O(n))。因为两者都对数据执行单个循环。但是,您可以使用foldback的方式轻松实现O(n^2)。从代码中可以看出foldback中有更多开销,因为创建了一个临时数组,以便以相反的顺序遍历列表。