有一种简单的方法可以使函数反转算法,例如:
>>> value = inverse("y = 2*x+3")
>>> print(value)
"x = (y-3)/2"
如果您无法为该功能制作实际代码,请向我推荐使这项工作更轻松的工具。该函数仅用于使用+, - ,*和/
进行逆算法答案 0 :(得分:6)
您应该尝试使用SymPy:
from sympy import solve
from sympy.abc import x, y
e = 2*x+3-y
solve(e,x)
#[y/2 - 3/2]
solve(e,y)
#[2*x + 3]
基于此,您可以构建inverse()
之类(适用于两个变量):
def inverse(string, left_string=None):
from sympy import solve, Symbol, sympify
string = '-' + string
e = sympify(string.replace('=','+'))
if left_string:
ans = left_string + ' = ' + str(solve(e, sympify(left_string))[0])
else:
left = sympify(string.split('=')[0].strip().replace('-',''))
symbols = e.free_symbols
symbols.remove( left )
right = list(symbols)[0]
ans = str(right) + ' = ' + str(solve(e, right)[0])
return ans
示例:
inverse(' x = 4*y/2')
#'y = x/2'
inverse(' y = 100/x + x**2')
#'x = -y/(3*(sqrt(-y**3/27 + 2500) + 50)**(1/3)) - (sqrt(-y**3/27 + 2500) + 50)**(1/3)'
inverse("screeny = (isox+isoy)*29/2.0344827586206895", "isoy")
#'isoy = -isox + 0.0701545778834721*screeny'
答案 1 :(得分:3)
评论时间有点长,但这是我想到的那种事情:
import sympy
def inverse(s):
terms = [sympy.sympify(term) for term in s.split("=")]
eqn = sympy.Eq(*terms)
var_to_solve_for = min(terms[1].free_symbols)
solns = sympy.solve(eqn, var_to_solve_for)
output_eqs = [sympy.Eq(var_to_solve_for, soln) for soln in solns]
return output_eqs
之后我们
>>> inverse("y = 2*x+3")
[x == y/2 - 3/2]
>>> inverse("x = 100/z + z**2")
[z == -x/(3*(sqrt(-x**3/27 + 2500) + 50)**(1/3)) - (sqrt(-x**3/27 + 2500) + 50)**(1/3), z == -x/(3*(-1/2 - sqrt(3)*I/2)*(sqrt(-x**3/27 + 2500) + 50)**(1/3)) - (-1/2 - sqrt(3)*I/2)*(sqrt(-x**3/27 + 2500) + 50)**(1/3),
z == -x/(3*(-1/2 + sqrt(3)*I/2)*(sqrt(-x**3/27 + 2500) + 50)**(1/3)) - (-1/2 + sqrt(3)*I/2)*(sqrt(-x**3/27 + 2500) + 50)**(1/3)]
等