我使用python多处理库进行算法,其中我有许多工作人员处理某些数据并将结果返回给父进程。我使用multiprocessing.Queue将作业传递给工作者,然后使用它来收集结果。
这一切都运行良好,直到工人无法处理一些数据。在下面的简化示例中,每个工作人员都有两个阶段:
当这两个阶段中的任何一个失败时,脚本完成后会出现死锁。这段代码模拟了我的问题:
import multiprocessing as mp
import random
workers_count = 5
# Probability of failure, change to simulate failures
fail_init_p = 0.2
fail_job_p = 0.3
#========= Worker =========
def do_work(job_state, arg):
if random.random() < fail_job_p:
raise Exception("Job failed")
return "job %d processed %d" % (job_state, arg)
def init(args):
if random.random() < fail_init_p:
raise Exception("Worker init failed")
return args
def worker_function(args, jobs_queue, result_queue):
# INIT
# What to do when init() fails?
try:
state = init(args)
except:
print "!Worker %d init fail" % args
return
# DO WORK
# Process data in the jobs queue
for job in iter(jobs_queue.get, None):
try:
# Can throw an exception!
result = do_work(state, job)
result_queue.put(result)
except:
print "!Job %d failed, skip..." % job
finally:
jobs_queue.task_done()
# Telling that we are done with processing stop token
jobs_queue.task_done()
#========= Parent =========
jobs = mp.JoinableQueue()
results = mp.Queue()
for i in range(workers_count):
mp.Process(target=worker_function, args=(i, jobs, results)).start()
# Populate jobs queue
results_to_expect = 0
for j in range(30):
jobs.put(j)
results_to_expect += 1
# Collecting the results
# What if some workers failed to process the job and we have
# less results than expected
for r in range(results_to_expect):
result = results.get()
print result
#Signal all workers to finish
for i in range(workers_count):
jobs.put(None)
#Wait for them to finish
jobs.join()
我对此代码有两个疑问:
init()
失败时,如何检测该工作人员是否无效而不等待工作人员完成?do_work()
失败时,如何通知父进程在结果队列中应该预期的结果较少? 谢谢你的帮助!
答案 0 :(得分:11)
我稍微更改了您的代码以使其正常工作(请参阅下面的说明)。
import multiprocessing as mp
import random
workers_count = 5
# Probability of failure, change to simulate failures
fail_init_p = 0.5
fail_job_p = 0.4
#========= Worker =========
def do_work(job_state, arg):
if random.random() < fail_job_p:
raise Exception("Job failed")
return "job %d processed %d" % (job_state, arg)
def init(args):
if random.random() < fail_init_p:
raise Exception("Worker init failed")
return args
def worker_function(args, jobs_queue, result_queue):
# INIT
# What to do when init() fails?
try:
state = init(args)
except:
print "!Worker %d init fail" % args
result_queue.put('init failed')
return
# DO WORK
# Process data in the jobs queue
for job in iter(jobs_queue.get, None):
try:
# Can throw an exception!
result = do_work(state, job)
result_queue.put(result)
except:
print "!Job %d failed, skip..." % job
result_queue.put('job failed')
#========= Parent =========
jobs = mp.Queue()
results = mp.Queue()
for i in range(workers_count):
mp.Process(target=worker_function, args=(i, jobs, results)).start()
# Populate jobs queue
results_to_expect = 0
for j in range(30):
jobs.put(j)
results_to_expect += 1
init_failures = 0
job_failures = 0
successes = 0
while job_failures + successes < 30 and init_failures < workers_count:
result = results.get()
init_failures += int(result == 'init failed')
job_failures += int(result == 'job failed')
successes += int(result != 'init failed' and result != 'job failed')
#print init_failures, job_failures, successes
for ii in range(workers_count):
jobs.put(None)
我的更改:
jobs
更改为正常Queue
(而不是JoinableQueue
)。None
个工作)。请注意,并非所有这些都可以从队列中提取(如果工作人员未能初始化)。顺便说一下,您的原始代码很好用且易于使用。随机概率位非常酷。