使用SSE,AVX和OpenMP进行快速内存转置

时间:2013-06-05 13:22:43

标签: optimization openmp sse transpose avx

我需要一个快速的内存转置算法来实现我在C / C ++中的高斯卷积函数。我现在做的是

convolute_1D
transpose
convolute_1D
transpose

事实证明,使用这种方法,滤波器的大小必须很大(或大于我的预期),或者转置需要比卷积更长的时间(例如,对于1920x1080矩阵,卷积与滤波器的转置需要相同的时间大小为35)。我正在使用的当前转置算法使用循环阻塞/平铺以及SSE和OpenMP。我尝试过使用AVX的版本,但速度并不快。关于如何加快速度的任何建议?

inline void transpose4x4_SSE(float *A, float *B, const int lda, const int ldb) {
    __m128 row1 = _mm_load_ps(&A[0*lda]);
    __m128 row2 = _mm_load_ps(&A[1*lda]);
    __m128 row3 = _mm_load_ps(&A[2*lda]);
    __m128 row4 = _mm_load_ps(&A[3*lda]);
     _MM_TRANSPOSE4_PS(row1, row2, row3, row4);
     _mm_store_ps(&B[0*ldb], row1);
     _mm_store_ps(&B[1*ldb], row2);
     _mm_store_ps(&B[2*ldb], row3);
     _mm_store_ps(&B[3*ldb], row4);
}
//block_size = 16 works best
inline void transpose_block_SSE4x4(float *A, float *B, const int n, const int m, const int lda, const int ldb ,const int block_size) {
    #pragma omp parallel for
    for(int i=0; i<n; i+=block_size) {
        for(int j=0; j<m; j+=block_size) {
            int max_i2 = i+block_size < n ? i + block_size : n;
            int max_j2 = j+block_size < m ? j + block_size : m;
            for(int i2=i; i2<max_i2; i2+=4) {
                for(int j2=j; j2<max_j2; j2+=4) {
                    transpose4x4_SSE(&A[i2*lda +j2], &B[j2*ldb + i2], lda, ldb);
                }
            }
        }
    }
}

使用AVX转置8x8浮点矩阵。它并不比四个4x4转置快。

inline void transpose8_ps(__m256 &row0, __m256 &row1, __m256 &row2, __m256 &row3, __m256 &row4, __m256 &row5, __m256 &row6, __m256 &row7) {
    __m256 __t0, __t1, __t2, __t3, __t4, __t5, __t6, __t7;
    __m256 __tt0, __tt1, __tt2, __tt3, __tt4, __tt5, __tt6, __tt7;
    __t0 = _mm256_unpacklo_ps(row0, row1);
    __t1 = _mm256_unpackhi_ps(row0, row1);
    __t2 = _mm256_unpacklo_ps(row2, row3);
    __t3 = _mm256_unpackhi_ps(row2, row3);
    __t4 = _mm256_unpacklo_ps(row4, row5);
    __t5 = _mm256_unpackhi_ps(row4, row5);
    __t6 = _mm256_unpacklo_ps(row6, row7);
    __t7 = _mm256_unpackhi_ps(row6, row7);
    __tt0 = _mm256_shuffle_ps(__t0,__t2,_MM_SHUFFLE(1,0,1,0));
    __tt1 = _mm256_shuffle_ps(__t0,__t2,_MM_SHUFFLE(3,2,3,2));
    __tt2 = _mm256_shuffle_ps(__t1,__t3,_MM_SHUFFLE(1,0,1,0));
    __tt3 = _mm256_shuffle_ps(__t1,__t3,_MM_SHUFFLE(3,2,3,2));
    __tt4 = _mm256_shuffle_ps(__t4,__t6,_MM_SHUFFLE(1,0,1,0));
    __tt5 = _mm256_shuffle_ps(__t4,__t6,_MM_SHUFFLE(3,2,3,2));
    __tt6 = _mm256_shuffle_ps(__t5,__t7,_MM_SHUFFLE(1,0,1,0));
    __tt7 = _mm256_shuffle_ps(__t5,__t7,_MM_SHUFFLE(3,2,3,2));
    row0 = _mm256_permute2f128_ps(__tt0, __tt4, 0x20);
    row1 = _mm256_permute2f128_ps(__tt1, __tt5, 0x20);
    row2 = _mm256_permute2f128_ps(__tt2, __tt6, 0x20);
    row3 = _mm256_permute2f128_ps(__tt3, __tt7, 0x20);
    row4 = _mm256_permute2f128_ps(__tt0, __tt4, 0x31);
    row5 = _mm256_permute2f128_ps(__tt1, __tt5, 0x31);
    row6 = _mm256_permute2f128_ps(__tt2, __tt6, 0x31);
    row7 = _mm256_permute2f128_ps(__tt3, __tt7, 0x31);
}

inline void transpose8x8_avx(float *A, float *B, const int lda, const int ldb) {
    __m256 row0 = _mm256_load_ps(&A[0*lda]);
    __m256 row1 = _mm256_load_ps(&A[1*lda]);
    __m256 row2 = _mm256_load_ps(&A[2*lda]);
    __m256 row3 = _mm256_load_ps(&A[3*lda]);
    __m256 row4 = _mm256_load_ps(&A[4*lda]);
    __m256 row5 = _mm256_load_ps(&A[5*lda]);
    __m256 row6 = _mm256_load_ps(&A[6*lda]);
    __m256 row7 = _mm256_load_ps(&A[7*lda]);
    transpose8_ps(row0, row1, row2, row3, row4, row5, row6, row7);
    _mm256_store_ps(&B[0*ldb], row0);
    _mm256_store_ps(&B[1*ldb], row1);
    _mm256_store_ps(&B[2*ldb], row2);
    _mm256_store_ps(&B[3*ldb], row3);
    _mm256_store_ps(&B[4*ldb], row4);
    _mm256_store_ps(&B[5*ldb], row5);
    _mm256_store_ps(&B[6*ldb], row6);
    _mm256_store_ps(&B[7*ldb], row7);

}

3 个答案:

答案 0 :(得分:3)

我猜你最好的选择是尝试将卷积和转置结合起来 - 也就是说,当你去的时候写出转换的结果。几乎可以肯定,转置的内存带宽有限,因此减少用于转置的指令数量并没有真正帮助(因此使用AVX缺乏改进)。减少数据传递次数可以最大限度地提高性能。

答案 1 :(得分:0)

FWIW,在3年前的Core i7 M笔记本电脑CPU上,这款天真的4x4转置仅比你的SSE版本慢,而在较新的Intel Xeon E5-2630 v2 @ 2.60GHz台式机CPU上快了近40%。

inline void transpose4x4_naive(float *A, float *B, const int lda, const int ldb) {
    const float r0[] = { A[0], A[1], A[2], A[3] }; // memcpy instead?
    A += lda;
    const float r1[] = { A[0], A[1], A[2], A[3] };
    A += lda;
    const float r2[] = { A[0], A[1], A[2], A[3] };
    A += lda;
    const float r3[] = { A[0], A[1], A[2], A[3] };

    B[0] = r0[0];
    B[1] = r1[0];
    B[2] = r2[0];
    B[3] = r3[0];
    B += ldb;
    B[0] = r0[1];
    B[1] = r1[1];
    B[2] = r2[1];
    B[3] = r3[1];
    B += ldb;
    B[0] = r0[2];
    B[1] = r1[2];
    B[2] = r2[2];
    B[3] = r3[2];
    B += ldb;
    B[0] = r0[3];
    B[1] = r1[3];
    B[2] = r2[3];
    B[3] = r3[3];
}

奇怪的是,旧的笔记本电脑CPU比双核E5-2630 v2台式机的速度快两倍,但这是另一回事:)

否则,您可能也对 http://research.colfaxinternational.com/file.axd?file=2013%2F8%2FColfax_Transposition-7110P.pdf http://colfaxresearch.com/multithreaded-transposition-of-square-matrices-with-common-code-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors/感兴趣(现在需要登录...)

答案 2 :(得分:0)

考虑这个4x4转置。

struct MATRIX {
    union {
        float  f[4][4];
        __m128 m[4];
        __m256 n[2];
    };
};
MATRIX myTranspose(MATRIX in) {

    // This takes 15 assembler instructions (compile not inline), 
    // and is faster than XMTranspose
    // Comes in like this  1  2  3  4  5  6  7  8
    //                     9 10 11 12 13 14 15 16
    //
    // Want the result     1  5  9 13  2  6 10 14
    //                     3  7 11 15  4  8 12 16

    __m256 t0, t1, t2, t3, t4, t5, n0, n1;
    MATRIX result;

    n0 = in.n[0];                                               // n0 =  1,  2,  3,  4,  5,  6,  7,  8
    n1 = in.n[1];                                               // n1 =  9, 10, 11, 12, 13, 14, 15, 16
    t0 = _mm256_unpacklo_ps(n0, n1);                            // t0 =  1,  9,  2, 10,  5, 13,  6, 14
    t1 = _mm256_unpackhi_ps(n0, n1);                            // t1 =  3, 11,  4, 12,  7, 15,  8, 16

    t2 = _mm256_permute2f128_ps(t0, t1, 0x20);                  // t2 =  1,  9,  2, 10,  3, 11,  4, 12 
    t3 = _mm256_permute2f128_ps(t0, t1, 0x31);                  // t3 =  5, 13,  6, 14,  7, 15,  8, 16

    t4 = _mm256_unpacklo_ps(t2, t3);                            // t2 =  1,  5,  9, 13,  3,  7, 11, 15
    t5 = _mm256_unpackhi_ps(t2, t3);                            // t3 =  2,  6, 10, 14,  4,  8, 12, 16

    result.n[0] = _mm256_permute2f128_ps(t4, t5, 0x20);         // t6 =  1,  5,  9, 13,  2,  6, 10, 14
    result.n[1] = _mm256_permute2f128_ps(t4, t5, 0x31);         // t7 =  3,  7, 11, 15,  4,  8, 12, 16
    return result;
}