将函数应用于R中的距离矩阵

时间:2009-11-07 07:39:09

标签: algorithm r

今天在操纵邮件列表中提出了这个问题。

http://groups.google.com/group/manipulatr/browse_thread/thread/fbab76945f7cba3f

我在改写。

给定距离矩阵(用dist计算)将函数应用于距离矩阵的行。

代码:

library(plyr)
N <- 100
a <- data.frame(b=1:N,c=runif(N))
d <- dist(a,diag=T,upper=T)
sumd <- adply(as.matrix(d),1,sum)

问题是要按行应用函数,你必须存储整个矩阵(而不仅仅是下三角形部分。因此它对于大型矩阵使用了太多内存。在我的计算机中,对于尺寸为~10000的矩阵,它失败了

有什么想法吗?

3 个答案:

答案 0 :(得分:5)

首先,对于尚未看到此问题的任何人,我强烈建议 reading this article on the r-wiki 进行代码优化。

这是另一个没有使用ifelse的版本(这是一个相对较慢的功能):

noeq.2 <- function(i, j, N) {
    i <- i-1
    j <- j-1
    x <- i*(N-1) - (i-1)*((i-1) + 1)/2 + j - i
    x2 <- j*(N-1) - (j-1)*((j-1) + 1)/2 + i - j
    idx <- i < j
    x[!idx] <- x2[!idx]
    x[i==j] <- 0
    x
}

我的笔记本电脑上的时间安排:

> N <- 1000
> system.time(sapply(1:N, function(i) sapply(1:N, function(j) noeq(i, j, N))))
   user  system elapsed 
  51.31    0.10   52.06 
> system.time(sapply(1:N, function(j) noeq.1(1:N, j, N)))
   user  system elapsed 
   2.47    0.02    2.67 
> system.time(sapply(1:N, function(j) noeq.2(1:N, j, N)))
   user  system elapsed 
   0.88    0.01    1.12 

lapply比sapply更快:

> system.time(do.call("rbind",lapply(1:N, function(j) noeq.2(1:N, j, N))))
   user  system elapsed 
   0.67    0.00    0.67 

答案 1 :(得分:4)

这是函数noeq的矢量化版本(参数ij):

noeq.1 <- function(i, j, N) {
    i <- i-1
    j <- j-1
    ifelse(i < j,
           i*(N-1) - ((i-1)*i)/2 + j - i,
           j*(N-1) - ((j-1)*j)/2 + i - j) * ifelse(i == j, 0, 1)
}   

> N <- 4
> sapply(1:N, function(i) sapply(1:N, function(j) noeq(i, j, N)))
     [,1] [,2] [,3] [,4]
[1,]    0    1    2    3
[2,]    1    0    4    5
[3,]    2    4    0    6
[4,]    3    5    6    0
> sapply(1:N, function(i) noeq.1(i, 1:N, N))
     [,1] [,2] [,3] [,4]
[1,]    0    1    2    3
[2,]    1    0    4    5
[3,]    2    4    0    6
[4,]    3    5    6    0

计时是在2.4 GHz Intel Core 2 Duo(Mac OS 10.6.1)上完成的:

> N <- 1000
> system.time(sapply(1:N, function(j) noeq.1(1:N, j, N)))
   user  system elapsed 
  0.676   0.061   0.738 
> system.time(sapply(1:N, function(i) sapply(1:N, function(j) noeq(i, j, N))))
   user  system elapsed 
 14.359   0.032  14.410

答案 2 :(得分:2)

我的解决方案是获取距离向量的索引,给定一行和矩阵的大小。我是从codeguru

得到的
int Trag_noeq(int row, int col, int N)
{
   //assert(row != col);    //You can add this in if you like
   if (row<col)
      return row*(N-1) - (row-1)*((row-1) + 1)/2 + col - row - 1;
   else if (col<row)
      return col*(N-1) - (col-1)*((col-1) + 1)/2 + row - col - 1;
   else
      return -1;
}

在转换为R之后,假设索引从1开始,并且假设我得到了较低的三而不是上三元矩阵 编辑:使用由rcs提供的矢量化版本

noeq.1 <- function(i, j, N) {
    i <- i-1
    j <- j-1
    ix <- ifelse(i < j,
                 i*(N-1) - (i-1)*((i-1) + 1)/2 + j - i,
                 j*(N-1) - (j-1)*((j-1) + 1)/2 + i - j) * ifelse(i == j, 0, 1)
    ix
}

## To get the indexes of the row, the following one liner works:

getrow <- function(z, N) noeq.1(z, 1:N, N)

## to get the row sums

getsum <- function(d, f=sum) {
    N <- attr(d, "Size")
    sapply(1:N, function(i) {
        if (i%%100==0) print(i)
        f(d[getrow(i,N)])
    })
}

所以,举例:

sumd2 <- getsum(d)

在矢量化之前,对于小矩阵来说,这比矩阵慢 。但是在矢量化之后只有大约3倍的速度。在Intel Core2Duo 2ghz中,应用10000行矩阵的总和只需要超过100秒。 as.matrix方法失败。谢谢rcs!