使用CUDA进行逐元素向量乘法

时间:2013-06-03 14:33:16

标签: cuda complex-numbers cublas

我在CUDA中构建了一个基本内核,用于执行两个复矢量的元素矢量矢量乘法。内核代码插入下面(multiplyElementwise)。它工作正常,但由于我注意到其他看似简单的操作(如缩放矢量)在CUBLAS或CULA等库中进行了优化,我想知道是否可以通过库调用替换我的代码?令我惊讶的是,CUBLAS和CULA都没有这个选项,我试图通过将一个向量作为对角矩阵向量乘积的对角线来伪造它,但结果真的很慢。

作为最后的手段,我尝试自己优化此代码(请参阅下面的multiplyElementwiseFast),将两个向量加载到共享内存中,然后从那里开始工作,但这比原始代码慢。

所以我的问题:

  1. 是否有库进行元素矢量矢量乘法?
  2. 如果没有,我可以加速我的代码(multiplyElementwise)吗?
  3. 非常感谢任何帮助!

    __global__ void multiplyElementwise(cufftComplex* f0, cufftComplex* f1, int size)
    {
        const int i = blockIdx.x*blockDim.x + threadIdx.x;
        if (i < size)
        {
            float a, b, c, d;
            a = f0[i].x; 
            b = f0[i].y;
            c = f1[i].x; 
            d = f1[i].y;
            float k;
            k = a * (c + d);
            d =  d * (a + b);
            c =  c * (b - a);
            f0[i].x = k - d;
            f0[i].y = k + c;
        }
    }
    
    __global__ void multiplyElementwiseFast(cufftComplex* f0, cufftComplex* f1, int size)
    {
        const int i = blockIdx.x*blockDim.x + threadIdx.x;
        if (i < 4*size)
        {
            const int N = 256;
            const int thId = threadIdx.x / 4;
            const int rem4 = threadIdx.x % 4;
            const int i4 = i / 4;
    
            __shared__ float a[N];
            __shared__ float b[N];
            __shared__ float c[N];
            __shared__ float d[N];
            __shared__ float Re[N];
            __shared__ float Im[N];
    
            if (rem4 == 0)
            {
                a[thId] = f0[i4].x;
                Re[thId] = 0.f;
            }
            if (rem4 == 1)
            {
                b[thId] = f0[i4].y;
                Im[thId] = 0.f;
            }
            if (rem4 == 2)
                c[thId] = f1[i4].x;
            if (rem4 == 0)
                d[thId] = f1[i4].y;
            __syncthreads();
    
            if (rem4 == 0)
                atomicAdd(&(Re[thId]), a[thId]*c[thId]);        
            if (rem4 == 1)
                atomicAdd(&(Re[thId]), -b[thId]*d[thId]);
            if (rem4 == 2)
                atomicAdd(&(Im[thId]), b[thId]*c[thId]);
            if (rem4 == 3)
                atomicAdd(&(Im[thId]), a[thId]*d[thId]);
            __syncthreads();
    
            if (rem4 == 0)
                f0[i4].x = Re[thId];
            if (rem4 == 1)
                f0[i4].y = Im[thId];
        }
    }        
    

2 个答案:

答案 0 :(得分:5)

如果你想要实现的是一个复杂数字的简单元素产品,你似乎在multiplyElementwise内核中做了一些额外的步骤,增加了寄存器的使用。您尝试计算的是:

f0[i].x = a*c - b*d;
f0[i].y = a*d + b*c;

(a + ib)*(c + id) = (a*c - b*d) + i(a*d + b*c)以来。通过使用改进的复数乘法,您可以进行1次乘法,增加3次和一些额外的寄存器。这是否合理可能取决于您使用的硬件。例如,如果您的硬件支持FMA(Fused Multiply-Add),那么这种优化可能效率不高。您应该考虑阅读本文档:“Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs”这也解决了浮点精度问题。

不过,您应该考虑使用Thrust。该库提供了许多高级工具,可以在主机和设备向量上运行。您可以在此处查看一长串示例:https://github.com/thrust/thrust/tree/master/examples。这会让你的生活更轻松。

更新代码

在您的情况下,您可以使用this example并将其修改为以下内容:

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <time.h>

struct ElementWiseProductBasic : public thrust::binary_function<float2,float2,float2>
{
    __host__ __device__
    float2 operator()(const float2& v1, const float2& v2) const
    {
        float2 res;
        res.x = v1.x * v2.x - v1.y * v2.y;
        res.y = v1.x * v2.y + v1.y * v2.x;
        return res;
    }
};

/**
 * See: http://www.embedded.com/design/embedded/4007256/Digital-Signal-Processing-Tricks--Fast-multiplication-of-complex-numbers%5D
 */
struct ElementWiseProductModified : public thrust::binary_function<float2,float2,float2>
{
    __host__ __device__
    float2 operator()(const float2& v1, const float2& v2) const
    {
        float2 res;
        float a, b, c, d, k;
        a = v1.x;
        b = v1.y;
        c = v2.x;
        d = v2.y;
        k = a * (c + d);
        d =  d * (a + b);
        c =  c * (b - a);
        res.x = k -d;
        res.y = k + c;
        return res;
    }
};

int get_random_int(int min, int max)
{
    return min + (rand() % (int)(max - min + 1));
}

thrust::host_vector<float2> init_vector(const size_t N)
{
    thrust::host_vector<float2> temp(N);
    for(size_t i = 0; i < N; i++)
    {
        temp[i].x = get_random_int(0, 10);
        temp[i].y = get_random_int(0, 10);
    }
    return temp;
}

int main(void)
{
    const size_t N = 100000;
    const bool compute_basic_product    = true;
    const bool compute_modified_product = true;

    srand(time(NULL));

    thrust::host_vector<float2>   h_A = init_vector(N);
    thrust::host_vector<float2>   h_B = init_vector(N);
    thrust::device_vector<float2> d_A = h_A;
    thrust::device_vector<float2> d_B = h_B;

    thrust::host_vector<float2> h_result(N);
    thrust::host_vector<float2> h_result_modified(N);

    if (compute_basic_product)
    {
        thrust::device_vector<float2> d_result(N);

        thrust::transform(d_A.begin(), d_A.end(),
                          d_B.begin(), d_result.begin(),
                          ElementWiseProductBasic());
        h_result = d_result;
    }

    if (compute_modified_product)
    {
        thrust::device_vector<float2> d_result_modified(N);

        thrust::transform(d_A.begin(), d_A.end(),
                          d_B.begin(), d_result_modified.begin(),
                          ElementWiseProductModified());
        h_result_modified = d_result_modified;
    }

    std::cout << std::fixed;
    for (size_t i = 0; i < 4; i++)
    {
        float2 a = h_A[i];
        float2 b = h_B[i];

        std::cout << "(" << a.x << "," << a.y << ")";
        std::cout << " * ";
        std::cout << "(" << b.x << "," << b.y << ")";

        if (compute_basic_product)
        {
            float2 prod = h_result[i];
            std::cout << " = ";
            std::cout << "(" << prod.x << "," << prod.y << ")";
        }

        if (compute_modified_product)
        {
            float2 prod_modified = h_result_modified[i];
            std::cout << " = ";
            std::cout << "(" << prod_modified.x << "," << prod_modified.y << ")";
        }
        std::cout << std::endl;
    }   

    return 0;
}

返回:

(6.000000,5.000000)  * (0.000000,1.000000)  = (-5.000000,6.000000)
(3.000000,2.000000)  * (0.000000,4.000000)  = (-8.000000,12.000000)
(2.000000,10.000000) * (10.000000,4.000000) = (-20.000000,108.000000)
(4.000000,8.000000)  * (10.000000,9.000000) = (-32.000000,116.000000)

然后,您可以比较两种不同乘法策略的时间,并选择最适合您的硬件。

答案 1 :(得分:1)

您可以使用cublasZdgmm。

cublasStatus_t cublasZdgmm(cublasHandle_t handle, cublasSideMode_t mode,
                      int m, int n,
                      const cuDoubleComplex *A, int lda,
                      const cuDoubleComplex *x, int incx,
                      cuDoubleComplex *C, int ldc)