在我的工作中,我使用了几个表(客户详细信息,交易记录等)。由于其中一些非常大(数百万行),我最近切换到data.table
包(感谢Matthew)。但是,它们中的一些非常小(几百行和4/5列),并被称为几次。因此,我开始考虑检索数据中的[.data.table
开销,而不是?set
中已经明确描述的设置()ting值,其中,无论表的大小是多少,设置在2微秒左右(取决于cpu)。
然而,从set
获取一个知道确切行和列的值似乎不等同于data.table
。一种 loopable [.data.table
。
library(data.table)
library(microbenchmark)
m = matrix(1,nrow=100000,ncol=100)
DF = as.data.frame(m)
DT = as.data.table(m) # same data used in ?set
> microbenchmark(DF[3450,1] , DT[3450, V1], times=1000) # much more overhead in DT
Unit: microseconds
expr min lq median uq max neval
DF[3450, 1] 32.745 36.166 40.5645 43.497 193.533 1000
DT[3450, V1] 788.791 803.453 813.2270 832.287 5826.982 1000
> microbenchmark(DF$V1[3450], DT[3450, 1, with=F], times=1000) # using atomic vector and
# removing part of DT overhead
Unit: microseconds
expr min lq median uq max neval
DF$V1[3450] 2.933 3.910 5.865 6.354 36.166 1000
DT[3450, 1, with = F] 297.629 303.494 305.938 309.359 1878.632 1000
> microbenchmark(DF$V1[3450], DT$V1[3450], times=1000) # using only atomic vectors
Unit: microseconds
expr min lq median uq max neval
DF$V1[3450] 2.933 2.933 3.421 3.422 40.565 1000 # DF seems still a bit faster (23%)
DT$V1[3450] 3.910 3.911 4.399 4.399 16.128 1000
最后一种方法确实是多次快速检索单个元素的最佳方法。但是,set
更快
> microbenchmark(set(DT,1L,1L,5L), times=1000)
Unit: microseconds
expr min lq median uq max neval
set(DT, 1L, 1L, 5L) 1.955 1.956 2.444 2.444 24.926 1000
问题是:如果我们能够set
一个2.444微秒的值不应该得到一个更小的值(或至少类似的)时间量?感谢。
编辑: 根据建议添加两个选项:
> microbenchmark(`[.data.frame`(DT,3450,1), DT[["V1"]][3450], times=1000)
Unit: microseconds
expr min lq median uq max neval
`[.data.frame`(DT, 3450, 1) 46.428 47.895 48.383 48.872 2165.509 1000
DT[["V1"]][3450] 20.038 21.504 23.459 24.437 116.316 1000
,遗憾的是并不比以前的尝试快。
答案 0 :(得分:7)
感谢@hadley我们有解决方案!
> microbenchmark(DT$V1[3450], set(DT,1L,1L,5L), .subset2(DT, "V1")[3450], times=1000, unit="us")
Unit: microseconds
expr min lq median uq max neval
DT$V1[3450] 2.566 3.208 3.208 3.528 27.582 1000
set(DT, 1L, 1L, 5L) 1.604 1.925 1.925 2.246 15.074 1000
.subset2(DT, "V1")[3450] 0.000 0.321 0.322 0.642 8.339 1000