CUDA中的二维中值滤波:如何有效地将全局内存复制到共享内存

时间:2013-06-01 19:34:40

标签: filter cuda median

我正在尝试使用窗口x*y进行中值过滤,其中xy是奇数和程序的参数。

我的想法是先看看我可以在一个块中执行多少线程,以及我可以使用多少共享内存,如下所示:

void cudaInit(int imgX, int imgY, int kx, int ky, int* cudaVars){
        int device;
        int deviceCount;
        cudaDeviceProp deviceProp;

            cudaGetDevice(&device);
            cudaGetDeviceProperties(&deviceProp, device);
        int kxMed = kx/2;
        int kyMed = ky/2;
        int n = deviceProp.maxThreadsPerBlock;
        while(f(n,kxMed,kyMed)>deviceProp.sharedMemPerBlock){
            n = n/2;
        }

        cudaVars[0] = n;
        cudaVars[1] = imgX/cudaVars[0];
        cudaVars[2] = imgY/cudaVars[0];
     }
    }



void mediaFilter_gpuB(uchar4* h_img,int width, int height, int kx, int ky){

    assert(h_img!=NULL && width!=0 && height!=0);
        int dev=0;
    cudaDeviceProp deviceProp;
    //DEVICE
    uchar4* d_img;
    uchar4* d_buf;

    int cudaVars[3]={0};
    cudaInit(width,height,kx,ky,cudaVars);
checkCudaErrors(cudaMalloc((void**) &(d_img), width*height*sizeof(unsigned char)*4));
    checkCudaErrors(cudaMalloc((void**) &(d_buf), width*height*sizeof(unsigned char)*4));

    cudaGetDevice(&dev);
    cudaGetDeviceProperties(&deviceProp,dev);
    checkCudaErrors(cudaMemcpy(d_img, h_img, width*height*sizeof(uchar4), cudaMemcpyHostToDevice));

    dim3 dimGrid(cudaVars[1],cudaVars[2],1);
    dim3 threads(cudaVars[0],1,1);
    mediaFilterB<<<dimGrid,threads,f(cudaVars[0],kx/2,ky/2)>>>(d_buf,d_img,width,height, kx,ky,cudaVars[0]);

    checkCudaErrors(cudaMemcpy(h_img, d_buf, width*height*sizeof(uchar4), cudaMemcpyDeviceToHost));
    checkCudaErrors(cudaFree(d_img));
    checkCudaErrors(cudaFree(d_buf));

}
__device__ void fillSmem(int* sMem, uchar4* buf, int width, int height, int kx, int ky){
    int kyMed=ky/2;
    int kxMed=kx/2;
    int sWidth = 2*kxMed+gridDim.x;
    int sHeight =2*kyMed+gridDim.x;
    int X = blockIdx.x*gridDim.x+threadIdx.x;
    int Y = blockIdx.y*gridDim.y;
    int j=0;
    while(threadIdx.x+j < sHeight){
        for(int i=0;i<sWidth;i++){
            sMem[threadIdx.x*gridDim.x+gridDim.x*j+i] = buf[X + i +  (threadIdx.x + Y)*width + j*width].x;
        }
        j++;
    }
}

目前,在函数mediaFilterB中,我只将全局内存复制到共享内存,但需要花费大量时间,即5图像中的8000*8000秒左右} 像素。另一方面,没有CUDA的顺序算法需要23秒来计算图像的中值滤波器。

我知道我在将全局内存复制到共享内存的过程中做错了,我的算法效率非常低,但我不知道如何纠正它。

1 个答案:

答案 0 :(得分:3)

我正在提供这个问题的答案,将其从未答复的清单中删除。

关于如何使用共享内存来改善CUDA中值过滤的经典示例是Accelereyes开发的代码,可从以下帖子下载:

Median Filtering: CUDA tips and tricks

这个想法是分配一个(BLOCK_WIDTH+2)x(BLOCK_HEIGHT+2)大小的共享内存。在第一步,外部元素归零。只有当这些元素对应于真实图像元素时,它们才会被全局内存值填充,否则它们将保持为零以进行填充。

为方便起见,我在下面提供了完整的工作代码。

#include <iostream>  
#include <fstream>   

using namespace std;

#define BLOCK_WIDTH 16 
#define BLOCK_HEIGHT 16

/*******************/
/* iDivUp FUNCTION */
/*******************/
int iDivUp(int a, int b){ return ((a % b) != 0) ? (a / b + 1) : (a / b); }

/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
    if (code != cudaSuccess) 
    {
        fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
        if (abort) exit(code);
    }
}

/**********************************************/
/* KERNEL WITH OPTIMIZED USE OF SHARED MEMORY */
/**********************************************/
__global__ void Optimized_Kernel_Function_shared(unsigned short *Input_Image, unsigned short *Output_Image, int Image_Width, int Image_Height)
{
    const int tx_l = threadIdx.x;                           // --- Local thread x index
    const int ty_l = threadIdx.y;                           // --- Local thread y index

    const int tx_g = blockIdx.x * blockDim.x + tx_l;        // --- Global thread x index
    const int ty_g = blockIdx.y * blockDim.y + ty_l;        // --- Global thread y index

    __shared__ unsigned short smem[BLOCK_WIDTH+2][BLOCK_HEIGHT+2];

    // --- Fill the shared memory border with zeros
    if (tx_l == 0)                      smem[tx_l]  [ty_l+1]    = 0;    // --- left border
    else if (tx_l == BLOCK_WIDTH-1)     smem[tx_l+2][ty_l+1]    = 0;    // --- right border
    if (ty_l == 0) {                    smem[tx_l+1][ty_l]      = 0;    // --- upper border
        if (tx_l == 0)                  smem[tx_l]  [ty_l]      = 0;    // --- top-left corner
        else if (tx_l == BLOCK_WIDTH-1) smem[tx_l+2][ty_l]      = 0;    // --- top-right corner
        }   else if (ty_l == BLOCK_HEIGHT-1) {smem[tx_l+1][ty_l+2]  = 0;    // --- bottom border
        if (tx_l == 0)                  smem[tx_l]  [ty_l+2]    = 0;    // --- bottom-left corder
        else if (tx_l == BLOCK_WIDTH-1) smem[tx_l+2][ty_l+2]    = 0;    // --- bottom-right corner
    }

    // --- Fill shared memory
                                                                    smem[tx_l+1][ty_l+1] =                           Input_Image[ty_g*Image_Width + tx_g];      // --- center
    if ((tx_l == 0)&&((tx_g > 0)))                                      smem[tx_l]  [ty_l+1] = Input_Image[ty_g*Image_Width + tx_g-1];      // --- left border
    else if ((tx_l == BLOCK_WIDTH-1)&&(tx_g < Image_Width - 1))         smem[tx_l+2][ty_l+1] = Input_Image[ty_g*Image_Width + tx_g+1];      // --- right border
    if ((ty_l == 0)&&(ty_g > 0)) {                                      smem[tx_l+1][ty_l]   = Input_Image[(ty_g-1)*Image_Width + tx_g];    // --- upper border
            if ((tx_l == 0)&&((tx_g > 0)))                                  smem[tx_l]  [ty_l]   = Input_Image[(ty_g-1)*Image_Width + tx_g-1];  // --- top-left corner
            else if ((tx_l == BLOCK_WIDTH-1)&&(tx_g < Image_Width - 1))     smem[tx_l+2][ty_l]   = Input_Image[(ty_g-1)*Image_Width + tx_g+1];  // --- top-right corner
         } else if ((ty_l == BLOCK_HEIGHT-1)&&(ty_g < Image_Height - 1)) {  smem[tx_l+1][ty_l+2] = Input_Image[(ty_g+1)*Image_Width + tx_g];    // --- bottom border
         if ((tx_l == 0)&&((tx_g > 0)))                                 smem[tx_l]  [ty_l+2] = Input_Image[(ty_g-1)*Image_Width + tx_g-1];  // --- bottom-left corder
        else if ((tx_l == BLOCK_WIDTH-1)&&(tx_g < Image_Width - 1))     smem[tx_l+2][ty_l+2] = Input_Image[(ty_g+1)*Image_Width + tx_g+1];  // --- bottom-right corner
    }
    __syncthreads();

    // --- Pull the 3x3 window in a local array
    unsigned short v[9] = { smem[tx_l][ty_l],   smem[tx_l+1][ty_l],     smem[tx_l+2][ty_l],
                            smem[tx_l][ty_l+1], smem[tx_l+1][ty_l+1],   smem[tx_l+2][ty_l+1],
                            smem[tx_l][ty_l+2], smem[tx_l+1][ty_l+2],   smem[tx_l+2][ty_l+2] };    

    // --- Bubble-sort
    for (int i = 0; i < 5; i++) {
        for (int j = i + 1; j < 9; j++) {
            if (v[i] > v[j]) { // swap?
                unsigned short tmp = v[i];
                v[i] = v[j];
                v[j] = tmp;
            }
         }
    }

    // --- Pick the middle one
    Output_Image[ty_g*Image_Width + tx_g] = v[4];
}

/********/
/* MAIN */
/********/
int main()
{
    const int Image_Width = 1580;
    const int Image_Height = 1050;

    // --- Open data file
    ifstream is;         is.open("C:\\Users\\user\\Documents\\Project\\Median_Filter\\Release\\Image_To_Be_Filtered.raw", ios::binary );

    // --- Get file length
    is.seekg(0, ios::end);
    int dataLength = is.tellg();
    is.seekg(0, ios::beg);

    // --- Read data from file and close file
    unsigned short* Input_Image_Host = new unsigned short[dataLength * sizeof(char) / sizeof(unsigned short)];
    is.read((char*)Input_Image_Host,dataLength);
    is.close();

    // --- CUDA warm up
    unsigned short *forFirstCudaMalloc; gpuErrchk(cudaMalloc((void**)&forFirstCudaMalloc, dataLength * sizeof(unsigned short)));
    gpuErrchk(cudaFree(forFirstCudaMalloc));

    // --- Allocate host and device memory spaces 
    unsigned short *Output_Image_Host = (unsigned short *)malloc(dataLength);
    unsigned short *Input_Image; gpuErrchk(cudaMalloc( (void**)&Input_Image, dataLength * sizeof(unsigned short))); 
    unsigned short *Output_Image; gpuErrchk(cudaMalloc((void**)&Output_Image, dataLength * sizeof(unsigned short))); 

    // --- Copy data from host to device
    gpuErrchk(cudaMemcpy(Input_Image, Input_Image_Host, dataLength, cudaMemcpyHostToDevice));// copying Host Data To Device Memory For Filtering

    // --- Grid and block sizes
    const dim3 grid (iDivUp(Image_Width, BLOCK_WIDTH), iDivUp(Image_Height, BLOCK_HEIGHT), 1);      
    const dim3 block(BLOCK_WIDTH, BLOCK_HEIGHT, 1); 

    /**********************************************/
    /* KERNEL WITH OPTIMIZED USE OF SHARED MEMORY */
    /**********************************************/

    cudaFuncSetCacheConfig(Optimized_Kernel_Function_shared, cudaFuncCachePreferShared);
    Optimized_Kernel_Function_shared<<<grid,block>>>(Input_Image, Output_Image, Image_Width, Image_Height);
    gpuErrchk(cudaPeekAtLastError());
    gpuErrchk(cudaDeviceSynchronize());

    // --- Copy results back to the host
    gpuErrchk(cudaMemcpy(Output_Image_Host, Output_Image, dataLength, cudaMemcpyDeviceToHost));

    // --- Open results file, write results and close the file
    ofstream of2;         of2.open("C:\\Users\\angelo\\Documents\\Project\\Median_Filter\\Release\\Filtered_Image.raw",  ios::binary);
    of2.write((char*)Output_Image_Host, dataLength);
    of2.close();

    cout << "\n Press Any Key To Exit..!!";
    gpuErrchk(cudaFree(Input_Image));

    delete Input_Image_Host;
    delete Output_Image_Host;

    return 0;
}