如何检测并重新插入缺失的数据?

时间:2013-05-31 17:44:23

标签: r data.table missing-data

我在数据表中缺少一行,用于描述timesids.ccount的功能:

> dates.dt[1001:1011]
        sid   s.c  count                time
 1: missing CLICK 104192 2013-05-25 10:00:00
 2: missing SHARE   7694 2013-05-25 10:00:00
 3: present CLICK  99573 2013-05-25 10:00:00
 4: present SHARE  89302 2013-05-25 10:00:00
 5: missing CLICK     28 2013-05-25 11:00:00
 6: present CLICK     25 2013-05-25 11:00:00
 7: present SHARE     15 2013-05-25 11:00:00
 8: missing CLICK 104544 2013-05-25 12:00:00
 9: missing SHARE   7253 2013-05-25 12:00:00
10: present CLICK 105891 2013-05-25 12:00:00
11: present SHARE  88709 2013-05-25 12:00:00

缺少的行是(我希望第1列和第2列以及每个时间片的两个值都有一行):

    missing SHARE      0 2013-05-25 11:00:00

如何检测和恢复丢失的行?

我发现这个的方式是

library(data.table)
total <- dates.dt[, list(sum(count)) , keyby="time"]
setnames(total,"V1","total")
ts <- dates.dt[s.c=="SHARE" & sid=="missing", list(sum(count)) , keyby="time"]
cat("SHARE/missing:",nrow(ts),"rows\n")
stopifnot(identical(total$time,ts$time)) # --> ERROR!
total$shares.missing <- ts$V1

现在,我想我可以找到ts$timetotal$time的第一个位置 不同并在那里插入0行,但这似乎相当乏味 过程

谢谢!

1 个答案:

答案 0 :(得分:2)

按照@ Frank的建议你可以这样做:

setkey(dt, time, sid, s.c)
dt[J(expand.grid(unique(time),unique(sid),unique(s.c)))][order(time, sid, s.c)]
#                   time     sid   s.c  count
# 1: 2013-05-25 10:00:00 missing CLICK 104192
# 2: 2013-05-25 10:00:00 missing SHARE   7694
# 3: 2013-05-25 10:00:00 present CLICK  99573
# 4: 2013-05-25 10:00:00 present SHARE  89302
# 5: 2013-05-25 11:00:00 missing CLICK     28
# 6: 2013-05-25 11:00:00 missing SHARE     NA
# 7: 2013-05-25 11:00:00 present CLICK     25
# 8: 2013-05-25 11:00:00 present SHARE     15
# 9: 2013-05-25 12:00:00 missing CLICK 104544
#10: 2013-05-25 12:00:00 missing SHARE   7253
#11: 2013-05-25 12:00:00 present CLICK 105891
#12: 2013-05-25 12:00:00 present SHARE  88709