想要:求和x和求和x * x。其中x = line [i]。 因为多个线程想要读/写“sumAll”和“sumAllQ”,我需要锁定它的访问权限。 问题是锁定类型在这里串行化。我需要在#“Environment.ProcessorCount”中将此操作拆分为循环,每个循环对数组的一部分求和,最后将它们的结果相加。但是我如何以编程方式进行编程呢?
示例代码:
//line is a float[]
Parallel.For(0, line.Length,
new ParallelOptions { MaxDegreeOfParallelism = Environment.ProcessorCount },
i =>
{
x = (double)line[i];
lock (sumLocker)
{
sumAll += x;
sumAllQ += x * x;
}
});
编辑1: Matthew Watson回答基准测试结果
在家里。 CPU Core 2 Quad Q9550 @ 2.83 GHz:
Result via Linq: SumAll=49999950000, SumAllQ=3,33332833333439E+15
Result via loop: SumAll=49999950000, SumAllQ=3,33332833333439E+15
Result via partition: SumAll=49999950000, SumAllQ=3,333328333335E+15
Via Linq took: 00:00:02.6983044
Via Loop took: 00:00:00.4811901
Via Partition took: 00:00:00.1595113
在工作中。 CPU i7 930 2.8 GHz:
Result via Linq: SumAll=49999950000, SumAllQ=3,33332833333439E+15
Result via loop: SumAll=49999950000, SumAllQ=3,33332833333439E+15
Result via partition: SumAll=49999950000, SumAllQ=3,333328333335E+15
Via Linq took: 00:00:01.5728736
Via Loop took: 00:00:00.3436929
Via Partition took: 00:00:00.0934209
答案 0 :(得分:4)
vcjones想知道你是否真的会看到任何加速。答案是:它可能取决于你拥有多少核心。 PLinq比家用PC(四核)上的普通循环慢。
我想出了一种替代方法,它使用Partitioner
将数字列表分成几个部分,以便您可以分别添加每个部分。还有一些information about using a Partitioner here。
使用Partitioner
方法似乎要快一点,至少在家用电脑上是这样。
这是我的测试程序。请注意,您必须在外部任何调试器上运行发布版本的以获得正确的时序。
此代码中的重要方法是 ViaPartition()
:
Result ViaPartition(double[] numbers)
{
var result = new Result();
var rangePartitioner = Partitioner.Create(0, numbers.Length);
Parallel.ForEach(rangePartitioner, (range, loopState) =>
{
var subtotal = new Result();
for (int i = range.Item1; i < range.Item2; i++)
{
double n = numbers[i];
subtotal.SumAll += n;
subtotal.SumAllQ += n*n;
}
lock (result)
{
result.SumAll += subtotal.SumAll;
result.SumAllQ += subtotal.SumAllQ;
}
});
return result;
}
我运行完整测试程序时的结果(如下所示):
Result via Linq: SumAll=49999950000, SumAllQ=3.33332833333439E+15
Result via loop: SumAll=49999950000, SumAllQ=3.33332833333439E+15
Result via partition: SumAll=49999950000, SumAllQ=3.333328333335E+15
Via Linq took: 00:00:01.1994524
Via Loop took: 00:00:00.2357107
Via Partition took: 00:00:00.0756707
(注意由于舍入误差导致的细微差别。)
看到其他系统的结果会很有趣。
这是完整的测试程序:
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Threading.Tasks;
namespace Demo
{
public class Result
{
public double SumAll;
public double SumAllQ;
public override string ToString()
{
return string.Format("SumAll={0}, SumAllQ={1}", SumAll, SumAllQ);
}
}
class Program
{
void run()
{
var numbers = Enumerable.Range(0, 1000000).Select(n => n/10.0).ToArray();
// Prove that the calculation is correct.
Console.WriteLine("Result via Linq: " + ViaLinq(numbers));
Console.WriteLine("Result via loop: " + ViaLoop(numbers));
Console.WriteLine("Result via partition: " + ViaPartition(numbers));
int count = 100;
TimeViaLinq(numbers, count);
TimeViaLoop(numbers, count);
TimeViaPartition(numbers, count);
}
void TimeViaLinq(double[] numbers, int count)
{
var sw = Stopwatch.StartNew();
for (int i = 0; i < count; ++i)
ViaLinq(numbers);
Console.WriteLine("Via Linq took: " + sw.Elapsed);
}
void TimeViaLoop(double[] numbers, int count)
{
var sw = Stopwatch.StartNew();
for (int i = 0; i < count; ++i)
ViaLoop(numbers);
Console.WriteLine("Via Loop took: " + sw.Elapsed);
}
void TimeViaPartition(double[] numbers, int count)
{
var sw = Stopwatch.StartNew();
for (int i = 0; i < count; ++i)
ViaPartition(numbers);
Console.WriteLine("Via Partition took: " + sw.Elapsed);
}
Result ViaLinq(double[] numbers)
{
return numbers.AsParallel().Aggregate(new Result(), (input, value) => new Result
{
SumAll = input.SumAll+value,
SumAllQ = input.SumAllQ+value*value
});
}
Result ViaLoop(double[] numbers)
{
var result = new Result();
for (int i = 0; i < numbers.Length; ++i)
{
double n = numbers[i];
result.SumAll += n;
result.SumAllQ += n*n;
}
return result;
}
Result ViaPartition(double[] numbers)
{
var result = new Result();
var rangePartitioner = Partitioner.Create(0, numbers.Length);
Parallel.ForEach(rangePartitioner, (range, loopState) =>
{
var subtotal = new Result();
for (int i = range.Item1; i < range.Item2; i++)
{
double n = numbers[i];
subtotal.SumAll += n;
subtotal.SumAllQ += n*n;
}
lock (result)
{
result.SumAll += subtotal.SumAll;
result.SumAllQ += subtotal.SumAllQ;
}
});
return result;
}
static void Main()
{
new Program().run();
}
}
}
答案 1 :(得分:3)
根据评论中的建议,您可以使用Aggregate
在LINQ中使用AsParallel
来完成此操作。例如:
using System.Linq;
//A class to hold the results.
//This can be improved by making it immutable and using a constructor.
public class Result
{
public double SumAll { get; set; }
public double SumAllQ { get; set; }
}
你可以像这样使用LINQ:
var result = line.AsParallel().Aggregate(new Result(), (input, value) => new Result {SumAll = input.SumAll+value, SumAllQ = input.SumAllQ+value*value});
甚至更好:
var pline = line.AsParallel().WithDegreeOfParallelism(Environment.ProcessorCount);
var result = new Result { SumAll = pline.Sum(), SumAllQ = pline.Sum(x => x * x) };
AsParallel
不允许您直接指定选项,但您可以使用.WithDegreeOfParallelism()
,.WithExecutionMode()
或.WithMergeOptions()
为您提供更多控制权。您可能必须使用WithDegreeOfParallelism
来使其与多个线程一起运行。