正确的方法做Parallel.For从Array计算数据

时间:2013-05-29 18:33:58

标签: c# .net-4.0 parallel-processing locking

想要:求和x和求和x * x。其中x = line [i]。 因为多个线程想要读/写“sumAll”和“sumAllQ”,我需要锁定它的访问权限。 问题是锁定类型在这里串行化。我需要在#“Environment.ProcessorCount”中将此操作拆分为循环,每个循环对数组的一部分求和,最后将它们的结果相加。但是我如何以编程方式进行编程呢?

示例代码:

//line is a float[]
Parallel.For(0, line.Length,
new ParallelOptions { MaxDegreeOfParallelism = Environment.ProcessorCount },
i =>
{
    x = (double)line[i];
    lock (sumLocker)
    {
        sumAll += x;
        sumAllQ += x * x;
    }
});

编辑1: Matthew Watson回答基准测试结果

在家里。 CPU Core 2 Quad Q9550 @ 2.83 GHz:

Result via Linq:      SumAll=49999950000, SumAllQ=3,33332833333439E+15
Result via loop:      SumAll=49999950000, SumAllQ=3,33332833333439E+15
Result via partition: SumAll=49999950000, SumAllQ=3,333328333335E+15
Via Linq took: 00:00:02.6983044
Via Loop took: 00:00:00.4811901
Via Partition took: 00:00:00.1595113

在工作中。 CPU i7 930 2.8 GHz:

Result via Linq:      SumAll=49999950000, SumAllQ=3,33332833333439E+15
Result via loop:      SumAll=49999950000, SumAllQ=3,33332833333439E+15
Result via partition: SumAll=49999950000, SumAllQ=3,333328333335E+15
Via Linq took: 00:00:01.5728736
Via Loop took: 00:00:00.3436929
Via Partition took: 00:00:00.0934209

2 个答案:

答案 0 :(得分:4)

vcjones想知道你是否真的会看到任何加速。答案是:它可能取决于你拥有多少核心。 PLinq比家用PC(四核)上的普通循环慢。

我想出了一种替代方法,它使用Partitioner将数字列表分成几个部分,以便您可以分别添加每个部分。还有一些information about using a Partitioner here

使用Partitioner方法似乎要快一点,至少在家用电脑上是这样。

这是我的测试程序。请注意,您必须在外部任何调试器上运行发布版本的以获得正确的时序。

此代码中的重要方法是 ViaPartition()

Result ViaPartition(double[] numbers)
{
    var result = new Result();

    var rangePartitioner = Partitioner.Create(0, numbers.Length);

    Parallel.ForEach(rangePartitioner, (range, loopState) =>
    {
        var subtotal = new Result();

        for (int i = range.Item1; i < range.Item2; i++)
        {
            double n = numbers[i];
            subtotal.SumAll  += n;
            subtotal.SumAllQ += n*n;
        }

        lock (result)
        {
            result.SumAll  += subtotal.SumAll;
            result.SumAllQ += subtotal.SumAllQ;
        }
    });

    return result;
}

我运行完整测试程序时的结果(如下所示):

Result via Linq:      SumAll=49999950000, SumAllQ=3.33332833333439E+15
Result via loop:      SumAll=49999950000, SumAllQ=3.33332833333439E+15
Result via partition: SumAll=49999950000, SumAllQ=3.333328333335E+15
Via Linq took: 00:00:01.1994524
Via Loop took: 00:00:00.2357107
Via Partition took: 00:00:00.0756707

(注意由于舍入误差导致的细微差别。)

看到其他系统的结果会很有趣。

这是完整的测试程序:

using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Threading.Tasks;

namespace Demo
{
    public class Result
    {
        public double SumAll;
        public double SumAllQ;

        public override string ToString()
        {
            return string.Format("SumAll={0}, SumAllQ={1}", SumAll, SumAllQ);
        }
    }

    class Program
    {
        void run()
        {
            var numbers = Enumerable.Range(0, 1000000).Select(n => n/10.0).ToArray();

            // Prove that the calculation is correct.
            Console.WriteLine("Result via Linq:      " + ViaLinq(numbers));
            Console.WriteLine("Result via loop:      " + ViaLoop(numbers));
            Console.WriteLine("Result via partition: " + ViaPartition(numbers));

            int count = 100;

            TimeViaLinq(numbers, count);
            TimeViaLoop(numbers, count);
            TimeViaPartition(numbers, count);
        }

        void TimeViaLinq(double[] numbers, int count)
        {
            var sw = Stopwatch.StartNew();

            for (int i = 0; i < count; ++i)
                ViaLinq(numbers);

            Console.WriteLine("Via Linq took: " + sw.Elapsed);
        }

        void TimeViaLoop(double[] numbers, int count)
        {
            var sw = Stopwatch.StartNew();

            for (int i = 0; i < count; ++i)
                ViaLoop(numbers);

            Console.WriteLine("Via Loop took: " + sw.Elapsed);
        }

        void TimeViaPartition(double[] numbers, int count)
        {
            var sw = Stopwatch.StartNew();

            for (int i = 0; i < count; ++i)
                ViaPartition(numbers);

            Console.WriteLine("Via Partition took: " + sw.Elapsed);
        }

        Result ViaLinq(double[] numbers)
        {
            return numbers.AsParallel().Aggregate(new Result(), (input, value) => new Result
            {
                SumAll  = input.SumAll+value,
                SumAllQ = input.SumAllQ+value*value
            });
        }

        Result ViaLoop(double[] numbers)
        {
            var result = new Result();

            for (int i = 0; i < numbers.Length; ++i)
            {
                double n = numbers[i];
                result.SumAll  += n;
                result.SumAllQ += n*n;
            }

            return result;
        }

        Result ViaPartition(double[] numbers)
        {
            var result = new Result();

            var rangePartitioner = Partitioner.Create(0, numbers.Length);

            Parallel.ForEach(rangePartitioner, (range, loopState) =>
            {
                var subtotal = new Result();

                for (int i = range.Item1; i < range.Item2; i++)
                {
                    double n = numbers[i];
                    subtotal.SumAll  += n;
                    subtotal.SumAllQ += n*n;
                }

                lock (result)
                {
                    result.SumAll  += subtotal.SumAll;
                    result.SumAllQ += subtotal.SumAllQ;
                }
            });

            return result;
        }

        static void Main()
        {
            new Program().run();
        }
    }
}

答案 1 :(得分:3)

根据评论中的建议,您可以使用Aggregate在LINQ中使用AsParallel来完成此操作。例如:

using System.Linq;

//A class to hold the results.
//This can be improved by making it immutable and using a constructor.
public class Result
{
    public double SumAll { get; set; }
    public double SumAllQ { get; set; }
}

你可以像这样使用LINQ:

var result = line.AsParallel().Aggregate(new Result(), (input, value) => new Result {SumAll = input.SumAll+value, SumAllQ = input.SumAllQ+value*value});

甚至更好:

var pline = line.AsParallel().WithDegreeOfParallelism(Environment.ProcessorCount);
var result = new Result { SumAll = pline.Sum(), SumAllQ = pline.Sum(x => x * x) };

AsParallel不允许您直接指定选项,但您可以使用.WithDegreeOfParallelism().WithExecutionMode().WithMergeOptions()为您提供更多控制权。您可能必须使用WithDegreeOfParallelism来使其与多个线程一起运行。