我对虚拟机编程很感兴趣,没有像虚拟机或vmware那样花哨,但可以模仿简单的架构,无论是cisc还是risc,比如Zilog,SPARC,MIPS或80686架构模型。 / p>
我想通过这样做,制作同类型的模拟器会相对简单,我只是对使用它来获取经验感兴趣(作为我的第一个C项目,我宁愿这样做) C比其他任何事情都好。
答案 0 :(得分:14)
获取有关特定类型应用程序的信息的好方法(在您的情况下也是获取c语言的好方法)是通过查看相同类型的开源项目的结构和细节类型。人们可能决定只是偷看,简要回顾然后“忘记”,以便从头开始一个人自己的项目,但在所有情况下这种访问都是有益的。
既然你提到了“简单架构”和Zilog,我认为 Z80处理器可能是一个很好的匹配。由于各种原因,Z80仿真器类型中有许多当前和过去的项目。顺便说一句,其中一个原因是许多老式插槽式视频控制台在Z80上运行,这促使怀旧游戏玩家编写模拟器来运行他们的旧收藏; - )
此类项目的一个示例是YAZE-AG,其中包括完整的Z80模拟器以及 C / PM 。整个事情用C语写。它也相对成熟(版本2.x)并且活跃。我猜这是一个非常小的团队的工作(可能是一个;-))。
祝你好运!答案 1 :(得分:11)
如果您正在设计CPU并模拟它,
准备好核心。意思是,为寄存器编写类。写一个标志。写一个内存控制器。
考虑操作码的类型。还有,单词的长度是多少?它是一个16位CPU吗? 8位?
您想要使用哪种类型的内存访问? DMA? HDMA?
您想支持哪种类型的中断? CPU是一个学习平台吗?它只是一个CPU和一些内存,还是它实际上有设备连接到它? (声音,视频等)。
以下是我正在处理的模拟器中的一些代码(公共域)。已经工作了几天。到目前为止大约有3200行代码(大多数是microcode.cs,由于它的大小为2600行而未在此处发布)。
using System;
namespace SYSTEM.cpu
{
// NOTE: Only level-trigger interrupts are planned right now
// To implement:
// - microcode
// - execution unit
// - etc
// This is the "core"; think of the CPU core like a building. You have several departments; flags, memory and registers
// Microcode is external
class core
{
public cpu_flags flags;
public cpu_registers registers;
public cpu_memory memory;
public core(byte[] ROM, byte[] PRG)
{
flags = new cpu_flags();
registers = new cpu_registers();
memory = new cpu_memory(ROM, PRG);
return;
}
}
}
using System;
namespace SYSTEM.cpu
{
class cpu_flags
{
// SYSTEM is not a 6502 emulator. The flags here, however, are exactly named as in 6502's SR
// They do NOT, however, WORK the same as in 6502. They are intended to similar uses, but the only identity is the naming.
// I just like the 6502's naming and whatnot.
// This would otherwise be a register in SYSTEM.cpu_core.cpu_registers. SR, with the bits used correctly.
// This would be less readable, code-wise, so I've opted to dedicate an entire CLASS to the status register
// Though, I should implement here a function for putting the flags in a byte, so "SR" can be pushed when servicing interrupts
public bool negative, // set if the high bit of the result of the last operation was 1
// bit 7, then so on
overflow, // says whether the last arithmetic operation resulted in overflow (NOTE: No subtraction opcodes available in SYSTEM)
// NO FLAG
brk, // break flag, set when a BREAK instruction is executed
// NO FLAG (would be decimal flag, but I don't see why anyone would want BCD. If you want it, go implement it in my emulator; in software)
// i.e. don't implement it in SYSTEM; write it in SYSTEM ASM and run it in SYSTEM's DEBUGGER
irq, // whether or not an interrupt should begin at the next interrupt period (if false, no interrupt)
zero, // says whether the last arithmetic operation resulted in zero
carry; // set when alpha rolls from 0xFFFF to 0x0000, or when a 1 is rotated/shifted during arithmetic
public cpu_flags()
{
negative = true; // all arithmetic registers are FFFF by default, so of course they are negative
overflow = false; // obviously, because no arithmetic operation has been performed yet
brk = false;
irq = true; // interrupts are enabled by default of course
zero = false; // obviously, since all arith regs are not zero by default
carry = false; // obviously, since no carry operation was performed
return;
}
// Explain:
// These flags are public. No point putting much management on them here, since they are boolean
// The opcodes that SYSTEM supports, will act on these flags. This is just here for code clarity/organisation
}
}
using System;
// This implements the memory controller
// NOTE: NO BANK SWITCHING IMPLEMENTED, AND NOT PLANNED AT THE MOMENT, SO MAKE DO WITH TEH 64
// SYSTEM has a 16-bit address bus (and the maximum memory supported; 64K)
// SYSTEM also has a 16-bit data bus; 8-bit operations are also performed here, they just use the low bits
// 0x0000-0x00FF is stack
// 0xF000-0xFFFF is mapped to BIOS ROM, and read-only; this is where BIOS is loaded on startup.
// (meaning PROGRAM ROM can be up to 4096B, or 4K. Normally this will be used for loading a BIOS)
// Mapping other PROGRAM ROM should start from 0x0100, but execution should start from 0xF000, where ROM/BIOS is mapped
// NOTE: PROGRAM ROM IS 32K, and mapped from 0x0100 to 0x80FF
// ;-)
namespace SYSTEM.cpu
{
class cpu_memory
{
// to implement:
// device interaction (certain addresses in ROM should be writeable by external device, connected to the controller)
// anything else that comes to mind.
// Oh, and bank switching, if feasible
private byte[] RAM; // As in the bull? ...
public cpu_memory(byte[] ROM, byte[] PRG)
{
// Some code here can be condensed, but for the interest of readability, it is optimized for readability. Not space.
// Checking whether environment is sane... SYSTEM is grinning and holding a spatula. Guess not.
if(ROM.Length > 4096) throw new Exception("****SYSINIT PANIC****: BIOS ROM size INCORRECT. MUST be within 4096 BYTES. STOP");
if (PRG.Length > 32768) throw new Exception("****SYSINIT PANIC**** PROGRAM ROM size INCORRECT. MUST be within 61184 BYTES. STOP");
if(ROM.Length != 4096) // Pads ROM to be 4096 bytes, if size is not exact
{ // This would not be done on a physical implementation of SYSTEM, but I feel like being kind to the lazy
this.RAM = ROM;
ROM = new byte[4096];
for(int i = 0x000; i < RAM.Length; i++) ROM[i] = this.RAM[i];
}
if(PRG.Length != 32768) // Pads PRG to be 61184 bytes, if size is not exact
{ // again, being nice to lazy people..
this.RAM = PRG;
PRG = new byte[32768];
for(int i = 0x000; i < RAM.Length; i++) PRG[i] = RAM[i];
}
this.RAM = new byte[0x10000]; // 64K of memory, the max supported
// Initialize all bytes in the stack, to 0xFF
for (int i = 0; i < 0x100; i++) this.RAM[i] = 0xFF; // This is redundant, but desired, for my own undisclosed reasons.
// LOAD PROGRAM ROM AND BIOS ROM INTO MEMORY
for (int i = 0xf000; i < 0x10000; i++) // LOAD BIOS ROM INTO MEMORY
{
this.RAM[i] = ROM[i - 0xf000]; // yeah, pretty easy actually
}
// Remember, 0x0100-0x80FF is for PROGRAM ROM
for (int i = 0x0100; i < 0x8100; i++) // LOAD PROGRAM ROM INTO MEMORY
{
this.RAM[i] = PRG[i - 0x100]; // not that you knew it would be much different
}
// The rest, 0x8100-0xEFFF, is reserved for now (the programmer can use it freely, as well as where PRG is loaded).
// still read/writeable though
return;
}
// READ/WRITE:
// NOTE: SYSTEM's cpu is LITTLE ENDIAN
// WHEN DOUBLE-READING, THE BYTE-ORDER IS CONVERTED TO BIG ENDIAN
// WHEN DOUBLE-WRITING, THE BYTE TO WRITE IS BIG ENDIAN, AND CONVERTED TO LITTLE ENDIAN
// CPU HAS MAR/MBR, but the MEMORY CONTROLLER has ITS OWN REGISTERS for this?
// SINGLE OPERATIONS
public byte read_single(ref cpu_registers registers, ushort address) // READ A SINGLE BYTE
{ // reading from any memory location is allowed, so this is simple
registers.memoryAddress = address;
return registers.memoryBuffer8 = this.RAM[registers.memoryAddress];
}
public ushort read_double(ref cpu_registers registers, ushort address) // READ TWO BYTES (converted to BIG ENDIAN byte order)
{
ushort ret = this.RAM[++address];
ret <<= 8;
ret |= this.RAM[--address];
registers.memoryAddress = address;
registers.memoryBuffer16 = ret;
return registers.memoryBuffer16;
}
public void write_single(ref cpu_registers registers, ushort address, byte mbr_single) // WRITE A SINGLE BYTE
{
if (address < 0x0100) return; // block write to the stack (0x0000-0x00FF)
if (address > 0xEFFF) return; // block writes to ROM area (0xF000-0xFFFF)
registers.memoryAddress = address;
registers.memoryBuffer8 = mbr_single;
this.RAM[registers.memoryAddress] = registers.memoryBuffer8;
return;
}
public void write_double(ref cpu_registers registers, ushort address, ushort mbr_double) // WRITE TWO BYTES (converted to LITTLE ENDIAN ORDER)
{
// writes to stack are blocked (0x0000-0x00FF)
// writes to ROM are blocked (0xF000-0xFFFF)
write_single(ref registers, ++address, (byte)(mbr_double >> 8));
write_single(ref registers, --address, (byte)(mbr_double & 0xff));
registers.memoryBuffer16 = mbr_double;
return;
}
public byte pop_single(ref cpu_registers registers) // POP ONE BYTE OFF STACK
{
return read_single(ref registers, registers.stackPointer++);
}
public ushort pop_double(ref cpu_registers registers) // POP TWO BYTES OFF STACK
{
ushort tmp = registers.stackPointer++; ++registers.stackPointer;
return read_double(ref registers, tmp);
}
// PUSH isn't as easy, since we can't use write_single() or write_double()
// because those are for external writes and they block writes to the stack
// external writes to the stack are possible of course, but
// these are done here through push_single() and push_double()
public void push_single(ref cpu_registers registers, byte VALUE) // PUSH ONE BYTE
{
registers.memoryAddress = --registers.stackPointer;
registers.memoryBuffer8 = VALUE;
this.RAM[registers.memoryAddress] = registers.memoryBuffer8;
return;
}
public void push_double(ref cpu_registers registers, ushort VALUE) // PUSH TWO BYTES
{
this.RAM[--registers.stackPointer] = (byte)(VALUE >> 8);
this.RAM[--registers.stackPointer] = (byte)(VALUE & 0xff);
registers.memoryAddress = registers.stackPointer;
registers.memoryBuffer16 = VALUE;
return;
}
}
}
using System;
namespace SYSTEM.cpu
{
// Contains the class for handling registers. Quite simple really.
class cpu_registers
{
private byte sp, cop; // stack pointer, current opcode
//
private ushort pp, ip, // program pointer, interrupt pointer
mar, mbr_hybrid; // memory address and memory buffer registers,
// store address being operated on, store data being read/written
// mbr is essentially the data bus; as said, it supports both 16 and 8 bit operation.
// There are properties in this class for handling mbr in 16-bit or 8-bit capacity, accordingly
// NOTE: Paged memory can be used, but this is handled by opcodes, otherwise the memory addressing
// is absolute
// NOTE: sp is also an address bus, but used on the stack (0x0000-0x00ff) only
// when pushing to the stack, or pulling, mbr gets updated in 8-bit capacity
// For pulling 16-bit word from stack, shifting register 8 left is needed, otherwise the next
// POP operation will override the result of the last
// Alpha is accumulator, the rest are general purpose
public ushort alphaX, bravoX, charlieX, deltaX;
public cpu_registers()
{
sp = 0xFF; // stack; push left, pop right
// stack is from 0x0000-0x00ff in memory
pp = 0xf000; // execution starts from 0xf000; ROM is loaded
// from 0xf000-0xffff, so 4KB of ROM.
// 0xf000-0xffff cannot be written to in software; though this disable
// self-modifying code, effectively.
ip = pp; // interrupt pointer starts from the same place as pp
alphaX = bravoX = charlieX = deltaX = 0xffff;
cop = 0x00; // whatever opcode 0x00 is, cop is that on init
mar = mbr_hybrid = 0x0000;
return;
}
// Registers:
public ushort memoryAddress // no restrictions on read/write, but obviously it needs to be handled with care for this register
{ // This should ONLY be handled by the execution unit, when actually loading instructions from memory
set { mar = value; }
get { return mar; }
}
// NOTE: 8-bit and 16-bit address bus are shared, but address bus must have all bits written.
// when writing 8-bit value, byte-signal gets split. Like how an audio/video splitter works.
public byte memoryBuffer8 // treats address bus as 8-bit, load one byte
{
set { // byte is loaded into both low and high byte in mbr (i.e. it is split to create duplicates, for a 16-bit signal)
mbr_hybrid &= 0x0000;
mbr_hybrid |= (ushort)value;
mbr_hybrid <<= 0x08;
mbr_hybrid |= (ushort)value;
} get {
return (byte)mbr_hybrid;
}
}
public ushort memoryBuffer16 // treats address bus as 16-bit, load two bytes
{
set {
mbr_hybrid &= 0x0000;
mbr_hybrid |= value;
} get {
return mbr_hybrid;
}
}
public byte stackPointer // sp is writable, but only push/pull opcodes
{ // should be able to write to it. There SHOULD
set { sp = value; } // be opcodes for reading from it
get { return sp; }
}
public byte currentOpcode
{
set { cop = value; }
get { return cop; }
}
public ushort programPointer // says where an instruction is being executed from
{
set { pp = value; }
get { return pp; }
}
public ushort interruptPointer // says where the next requested interrupt should begin
{ // (copied into PP, after pushing relevant registers)
set { ip = value; }
get { return ip; }
}
public byte status(cpu_flags flags) // status word, containing all flags
{
byte ret = 0;
if (flags.negative) ret |= 0x80;
if (flags.overflow) ret |= 0x40;
if (flags.brk) ret |= 0x10;
if (flags.irq) ret |= 0x04;
if (flags.zero) ret |= 0x02;
if (flags.carry) ret |= 0x01;
return ret;
}
}
}
using System;
using System.Collections.Generic;
namespace SYSTEM.cpu
{
class cpu_execution
{
public core processor; // the "core", detailing the CPU status, including memory, memory controller, etc
public cpu_microcode microcode; // the microcode unit (note, microcode is plug and play, you could use something else here)
public cpu_execution(byte[] ROM, byte[] PRG) // initialize execution unit and everything under it
{
processor = new core(ROM, PRG);
microcode = new cpu_microcode();
return;
}
public void fetch() // fetch current instruction
{
processor.registers.currentOpcode = processor.memory.read_single(ref processor.registers, processor.registers.programPointer);
return;
}
public void execute() // execute current instruction
{
processor = microcode.use(processor);
return;
}
}
}
模拟操作码的microcode.cs不包括在这里,因为它是2600行代码。
所有这些都是C#。
答案 2 :(得分:7)
我建议查看这本书Elements of Computing Systems。在阅读本书的过程中,您将从基本逻辑门开始构建虚拟计算机。当你完成这本书的时候,你将拥有一个基本的操作系统,编译器等 源代码可在线获得,它还在Java之上实现了计算机的体系结构。
答案 3 :(得分:6)
一个常见的练习是构建一个简单的计算器。它只有有限数量的操作(通常为4,* / + -
),一种数据类型(数字),您可能非常了解 应该如何工作。这使调试变得更容易。
尽管简单,但您必须处理一些基本的VM问题。您需要解析一系列命令,存储您正在处理的多个对象,并处理输出。
巧合的是,计算器IC是CPU的先驱,因此从历史的角度来看,这种方法也很有意义。
答案 4 :(得分:4)
一些想法:
除非您了解其他编程语言和/或对汇编程序的合理理解,否则这是一个非常具有挑战性的第一个C项目。从来没有,祝你好运!
答案 5 :(得分:4)
我写的第一个真正的程序(除了一个页面类别的分配)是我在高中使用的HP2100A小型机的模拟器。我在C的前身B中写过,我不认为这对于第一个C程序来说太难了。如果有的话,它可能太简单了。当然像80686这样的东西比Z-80更具挑战性,但它已经由QEMU,VirtualBox和其他人完成。
最困难的部分是将机器连接到外部世界的整个中断系统。
您可能想要了解LLVM并决定是否真的要编写VM或模拟器。
答案 6 :(得分:2)
这不是产品认可,而是观察......
我会先拿起Deitel和Deitel的书。 (可能是this one如果你想用C语言做的话)他们似乎总是有一章关于制作虚拟机,以及为你的虚拟机编写汇编代码的一些说明,无论他们用什么语言'重新教学。
修改 - 添加
(虽然我在购买前先在图书馆查看,以防我误解了你想写的内容)