我正在尝试将deltaT列添加到数据框中,其中deltaT是连续行之间的时间差(在时间序列中编入索引)。
time value
2012-03-16 23:50:00 1
2012-03-16 23:56:00 2
2012-03-17 00:08:00 3
2012-03-17 00:10:00 4
2012-03-17 00:12:00 5
2012-03-17 00:20:00 6
2012-03-20 00:43:00 7
所需结果如下所示(deltaT单位以分钟显示):
time value deltaT
2012-03-16 23:50:00 1 0
2012-03-16 23:56:00 2 6
2012-03-17 00:08:00 3 12
2012-03-17 00:10:00 4 2
2012-03-17 00:12:00 5 2
2012-03-17 00:20:00 6 8
2012-03-20 00:43:00 7 23
答案 0 :(得分:50)
注意这是使用numpy> = 1.7,用于numpy< 1.7,请在此处查看转换:http://pandas.pydata.org/pandas-docs/dev/timeseries.html#time-deltas
原始框架,带有日期时间索引
In [196]: df
Out[196]:
value
2012-03-16 23:50:00 1
2012-03-16 23:56:00 2
2012-03-17 00:08:00 3
2012-03-17 00:10:00 4
2012-03-17 00:12:00 5
2012-03-17 00:20:00 6
2012-03-20 00:43:00 7
In [199]: df.index
Out[199]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-03-16 23:50:00, ..., 2012-03-20 00:43:00]
Length: 7, Freq: None, Timezone: None
这是你想要的timedelta64
In [200]: df['tvalue'] = df.index
In [201]: df['delta'] = (df['tvalue']-df['tvalue'].shift()).fillna(0)
In [202]: df
Out[202]:
value tvalue delta
2012-03-16 23:50:00 1 2012-03-16 23:50:00 00:00:00
2012-03-16 23:56:00 2 2012-03-16 23:56:00 00:06:00
2012-03-17 00:08:00 3 2012-03-17 00:08:00 00:12:00
2012-03-17 00:10:00 4 2012-03-17 00:10:00 00:02:00
2012-03-17 00:12:00 5 2012-03-17 00:12:00 00:02:00
2012-03-17 00:20:00 6 2012-03-17 00:20:00 00:08:00
2012-03-20 00:43:00 7 2012-03-20 00:43:00 3 days, 00:23:00
在忽略日差的情况下得出答案(你的最后一天是3/20,之前是3/17),实际上很棘手
In [204]: df['ans'] = df['delta'].apply(lambda x: x / np.timedelta64(1,'m')).astype('int64') % (24*60)
In [205]: df
Out[205]:
value tvalue delta ans
2012-03-16 23:50:00 1 2012-03-16 23:50:00 00:00:00 0
2012-03-16 23:56:00 2 2012-03-16 23:56:00 00:06:00 6
2012-03-17 00:08:00 3 2012-03-17 00:08:00 00:12:00 12
2012-03-17 00:10:00 4 2012-03-17 00:10:00 00:02:00 2
2012-03-17 00:12:00 5 2012-03-17 00:12:00 00:02:00 2
2012-03-17 00:20:00 6 2012-03-17 00:20:00 00:08:00 8
2012-03-20 00:43:00 7 2012-03-20 00:43:00 3 days, 00:23:00 23
答案 1 :(得分:23)
我们可以使用to_series
创建一个索引和值等于索引键的系列,然后计算连续行之间的差异,这将导致localhost
dtype。获得此项后,通过timedelta64[ns]
属性,我们可以访问时间部分的seconds属性,最后将每个元素除以60,以便在几分钟内输出(可选择用0填充第一个值)。
.dt
<强> 简化: 强>
当我们执行In [13]: df['deltaT'] = df.index.to_series().diff().dt.seconds.div(60, fill_value=0)
...: df # use .astype(int) to obtain integer values
Out[13]:
value deltaT
time
2012-03-16 23:50:00 1 0.0
2012-03-16 23:56:00 2 6.0
2012-03-17 00:08:00 3 12.0
2012-03-17 00:10:00 4 2.0
2012-03-17 00:12:00 5 2.0
2012-03-17 00:20:00 6 8.0
2012-03-20 00:43:00 7 23.0
时:
diff
秒转换为分钟:
In [8]: ser_diff = df.index.to_series().diff()
In [9]: ser_diff
Out[9]:
time
2012-03-16 23:50:00 NaT
2012-03-16 23:56:00 0 days 00:06:00
2012-03-17 00:08:00 0 days 00:12:00
2012-03-17 00:10:00 0 days 00:02:00
2012-03-17 00:12:00 0 days 00:02:00
2012-03-17 00:20:00 0 days 00:08:00
2012-03-20 00:43:00 3 days 00:23:00
Name: time, dtype: timedelta64[ns]
如果您想要包括先前排除的In [10]: ser_diff.dt.seconds.div(60, fill_value=0)
Out[10]:
time
2012-03-16 23:50:00 0.0
2012-03-16 23:56:00 6.0
2012-03-17 00:08:00 12.0
2012-03-17 00:10:00 2.0
2012-03-17 00:12:00 2.0
2012-03-17 00:20:00 8.0
2012-03-20 00:43:00 23.0
Name: time, dtype: float64
部分(仅考虑时间部分),dt.total_seconds
将为您提供经过的持续时间(以秒为单位),然后可以计算分钟数再由分裂。
date
答案 2 :(得分:2)
>= Numpy version 1.7.0.
还可以从df.index.to_series().diff()
(纳秒-默认dtype)到timedelta64[ns]
(分钟)[Frequency conversion({astyping层划分)]
timedelta64[m]
(ΔT dtype: df['ΔT'] = df.index.to_series().diff().astype('timedelta64[m]')
value ΔT
time
2012-03-16 23:50:00 1 NaN
2012-03-16 23:56:00 2 6.0
2012-03-17 00:08:00 3 12.0
2012-03-17 00:10:00 4 2.0
2012-03-17 00:12:00 5 2.0
2012-03-17 00:20:00 6 8.0
2012-03-20 00:43:00 7 4343.0
)
如果要转换为float64
,请在转换前用int
填充na
值
0
Timedelta数据类型支持大量的时间单位,以及可以强制转换为其他任何单位的通用单位。
以下是日期单位:
>>> df.index.to_series().diff().fillna(0).astype('timedelta64[m]').astype('int')
time
2012-03-16 23:50:00 0
2012-03-16 23:56:00 6
2012-03-17 00:08:00 12
2012-03-17 00:10:00 2
2012-03-17 00:12:00 2
2012-03-17 00:20:00 8
2012-03-20 00:43:00 4343
Name: time, dtype: int64
以下是时间单位:
Y year
M month
W week
D day
如果您希望将差值提高到小数点,请使用h hour
m minute
s second
ms millisecond
us microsecond
ns nanosecond
ps picosecond
fs femtosecond
as attosecond
,即除以np.timedelta64(1, 'm')
例如如果df如下,
true division
在下面检查asyping( value
time
2012-03-16 23:50:21 1
2012-03-16 23:56:28 2
2012-03-17 00:08:08 3
2012-03-17 00:10:56 4
2012-03-17 00:12:12 5
2012-03-17 00:20:00 6
2012-03-20 00:43:43 7
)和 floor division
之间的区别。
true division