找到两个数据列的较低点并进行比较

时间:2013-05-26 06:19:12

标签: r dataframe

我有一个包含日期,ID,变量和值的数据框。我想比较代表系列较低点的点。数据代表潮流。我想找到方法,以便我可以比较低潮点。

玩具数据如下:

jd1 <- structure(list(Date = c(300.0416565, 300.0833435, 300.125, 300.1666565, 
300.2083435, 300.25, 300.2916565, 300.3333435, 300.375, 300.4166565, 
300.4583435, 300.5, 300.5416565, 300.5833435, 300.625, 300.6666565, 
300.7083435, 300.75, 300.7916565, 300.8333435, 300.875, 300.9166565, 
300.9583435, 301, 301.0416565, 301.0833435, 301.125, 301.1666565, 
301.2083435, 301.25, 301.2916565, 301.3333435, 301.375, 301.4166565, 
301.4583435, 301.5, 301.5416565, 301.5833435, 301.625, 301.6666565, 
301.7083435, 301.75, 301.7916565, 301.8333435, 301.875, 301.9166565, 
301.9583435, 302, 302.0416565, 302.0833435, 302.125, 302.1666565, 
302.2083435, 302.25, 302.2916565, 302.3333435, 302.375, 302.4166565, 
302.4583435, 302.5, 302.5416565, 302.5833435, 302.625, 302.6666565, 
302.7083435, 302.75, 302.7916565, 302.8333435, 302.875, 302.9166565, 
302.9583435, 303, 303.0416565, 303.0833435, 303.125, 303.1666565, 
303.2083435, 303.25, 303.2916565, 303.3333435, 303.375, 303.4166565, 
303.4583435, 303.5, 303.5416565, 303.5833435, 303.625, 303.6666565, 
303.7083435, 303.75, 303.7916565, 303.8333435, 303.875, 303.9166565, 
303.9583435, 304, 304.0416565, 304.0833435, 304.125, 304.1666565, 
304.2083435, 304.25, 304.2916565, 304.3333435, 304.375, 304.4166565, 
304.4583435, 304.5, 304.5416565, 304.5833435, 304.625, 304.6666565, 
304.7083435, 304.75, 304.7916565, 304.8333435, 304.875, 304.9166565, 
304.9583435, 300.0416565, 300.0833435, 300.125, 300.1666565, 
300.2083435, 300.25, 300.2916565, 300.3333435, 300.375, 300.4166565, 
300.4583435, 300.5, 300.5416565, 300.5833435, 300.625, 300.6666565, 
300.7083435, 300.75, 300.7916565, 300.8333435, 300.875, 300.9166565, 
300.9583435, 301, 301.0416565, 301.0833435, 301.125, 301.1666565, 
301.2083435, 301.25, 301.2916565, 301.3333435, 301.375, 301.4166565, 
301.4583435, 301.5, 301.5416565, 301.5833435, 301.625, 301.6666565, 
301.7083435, 301.75, 301.7916565, 301.8333435, 301.875, 301.9166565, 
301.9583435, 302, 302.0416565, 302.0833435, 302.125, 302.1666565, 
302.2083435, 302.25, 302.2916565, 302.3333435, 302.375, 302.4166565, 
302.4583435, 302.5, 302.5416565, 302.5833435, 302.625, 302.6666565, 
302.7083435, 302.75, 302.7916565, 302.8333435, 302.875, 302.9166565, 
302.9583435, 303, 303.0416565, 303.0833435, 303.125, 303.1666565, 
303.2083435, 303.25, 303.2916565, 303.3333435, 303.375, 303.4166565, 
303.4583435, 303.5, 303.5416565, 303.5833435, 303.625, 303.6666565, 
303.7083435, 303.75, 303.7916565, 303.8333435, 303.875, 303.9166565, 
303.9583435, 304, 304.0416565, 304.0833435, 304.125, 304.1666565, 
304.2083435, 304.25, 304.2916565, 304.3333435, 304.375, 304.4166565, 
304.4583435, 304.5, 304.5416565, 304.5833435, 304.625, 304.6666565, 
304.7083435, 304.75, 304.7916565, 304.8333435, 304.875, 304.9166565, 
304.9583435, 300.0416565, 300.0833435, 300.125, 300.1666565, 
300.2083435, 300.25, 300.2916565, 300.3333435, 300.375, 300.4166565, 
300.4583435, 300.5, 300.5416565, 300.5833435, 300.625, 300.6666565, 
300.7083435, 300.75, 300.7916565, 300.8333435, 300.875, 300.9166565, 
300.9583435, 301, 301.0416565, 301.0833435, 301.125, 301.1666565, 
301.2083435, 301.25, 301.2916565, 301.3333435, 301.375, 301.4166565, 
301.4583435, 301.5, 301.5416565, 301.5833435, 301.625, 301.6666565, 
301.7083435, 301.75, 301.7916565, 301.8333435, 301.875, 301.9166565, 
301.9583435, 302, 302.0416565, 302.0833435, 302.125, 302.1666565, 
302.2083435, 302.25, 302.2916565, 302.3333435, 302.375, 302.4166565, 
302.4583435, 302.5, 302.5416565, 302.5833435, 302.625, 302.6666565, 
302.7083435, 302.75, 302.7916565, 302.8333435, 302.875, 302.9166565, 
302.9583435, 303, 303.0416565, 303.0833435, 303.125, 303.1666565, 
303.2083435, 303.25, 303.2916565, 303.3333435, 303.375, 303.4166565, 
303.4583435, 303.5, 303.5416565, 303.5833435, 303.625, 303.6666565, 
303.7083435, 303.75, 303.7916565, 303.8333435, 303.875, 303.9166565, 
303.9583435, 304, 304.0416565, 304.0833435, 304.125, 304.1666565, 
304.2083435, 304.25, 304.2916565, 304.3333435, 304.375, 304.4166565, 
304.4583435, 304.5, 304.5416565, 304.5833435, 304.625, 304.6666565, 
304.7083435, 304.75, 304.7916565, 304.8333435, 304.875, 304.9166565, 
304.9583435, 300.0416565, 300.0833435, 300.125, 300.1666565, 
300.2083435, 300.25, 300.2916565, 300.3333435, 300.375, 300.4166565, 
300.4583435, 300.5, 300.5416565, 300.5833435, 300.625, 300.6666565, 
300.7083435, 300.75, 300.7916565, 300.8333435, 300.875, 300.9166565, 
300.9583435, 301, 301.0416565, 301.0833435, 301.125, 301.1666565, 
301.2083435, 301.25, 301.2916565, 301.3333435, 301.375, 301.4166565, 
301.4583435, 301.5, 301.5416565, 301.5833435, 301.625, 301.6666565, 
301.7083435, 301.75, 301.7916565, 301.8333435, 301.875, 301.9166565, 
301.9583435, 302, 302.0416565, 302.0833435, 302.125, 302.1666565, 
302.2083435, 302.25, 302.2916565, 302.3333435, 302.375, 302.4166565, 
302.4583435, 302.5, 302.5416565, 302.5833435, 302.625, 302.6666565, 
302.7083435, 302.75, 302.7916565, 302.8333435, 302.875, 302.9166565, 
302.9583435, 303, 303.0416565, 303.0833435, 303.125, 303.1666565, 
303.2083435, 303.25, 303.2916565, 303.3333435, 303.375, 303.4166565, 
303.4583435, 303.5, 303.5416565, 303.5833435, 303.625, 303.6666565, 
303.7083435, 303.75, 303.7916565, 303.8333435, 303.875, 303.9166565, 
303.9583435, 304, 304.0416565, 304.0833435, 304.125, 304.1666565, 
304.2083435, 304.25, 304.2916565, 304.3333435, 304.375, 304.4166565, 
304.4583435, 304.5, 304.5416565, 304.5833435, 304.625, 304.6666565, 
304.7083435, 304.75, 304.7916565, 304.8333435, 304.875, 304.9166565, 
304.9583435), id = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L), .Label = c("A", "B"), class = "factor"), variable = structure(c(1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Modeled", 
"Observed"), class = "factor"), value = c(0.289277673, 0.276237488, 
0.258902788, 0.236579895, 0.221315026, 0.214318037, 0.190926909, 
0.158144593, 0.113302708, 0.103684902, 0.0973, 0.0877, 0.0842, 
0.078397274, 0.0845, 0.0933, 0.113663912, 0.123064399, 0.15754807, 
0.148393035, 0.135645747, 0.137590647, 0.133154154, 0.131152511, 
0.114152908, 0.0804, 0.0554, 0.0317, 0.00407, -0.0215, -0.0407, 
-0.0585, -0.0754, -0.085, -0.0792, -0.0703, -0.0725, -0.0777, 
-0.0683, -0.0473, -0.0134, 0.0178, 0.0395, 0.0573, 0.0797, 0.100238919, 
0.109163284, 0.110594273, 0.091974139, 0.081, 0.068, 0.054254413, 
0.0183, -0.00877, -0.0309, -0.0495, -0.0699, -0.083, -0.0888, 
-0.0962, -0.0963, -0.0851, -0.0676, -0.0598, -0.0365, -0.00677, 
0.0301, 0.0606, 0.0909, 0.119922519, 0.140920162, 0.155159235, 
0.153021574, 0.140555382, 0.111949205, 0.11610949, 0.0991, 0.076886773, 
0.0528, 0.0307, 0.00606, -0.0171, -0.0283, -0.0336, -0.037, -0.028, 
-0.0183, -0.0093, 0.0152, 0.054, 0.0897, 0.118319511, 0.153429627, 
0.186389565, 0.209027171, 0.221139789, 0.220542192, 0.220058084, 
0.197355151, 0.188107729, 0.180683732, 0.166437268, 0.135077357, 
0.111140013, 0.0888, 0.0593, 0.039132833, 0.0297, 0.019, 0.0148, 
0.0214, 0.0245, 0.0424, 0.0705, 0.107400417, 0.140892863, 0.168679595, 
0.201768041, 0.228698373, 0.327153444, 0.319390416, 0.307670712, 
0.292618752, 0.278188229, 0.265322924, 0.257008314, 0.245739579, 
0.232013464, 0.221745133, 0.203713775, 0.180470705, 0.164475083, 
0.151421905, 0.144095063, 0.136528254, 0.126950502, 0.129460931, 
0.136523843, 0.15517354, 0.169526219, 0.174442887, 0.175637841, 
0.168602347, 0.160870671, 0.154715896, 0.14329493, 0.131017327, 
0.113781691, 0.097275972, 0.0815, 0.066, 0.0523, 0.0404, 0.0277, 
0.0135, 0.00327, -0.00536, -0.0122, -0.017, -0.0184, -0.00771, 
0.0103, 0.0326, 0.058, 0.0814, 0.102339506, 0.121121645, 0.136081815, 
0.140753031, 0.13616991, 0.124885201, 0.1086303, 0.0927, 0.0784, 
0.061131477, 0.0453, 0.0304, 0.0152, 0.00156, -0.0103, -0.0205, 
-0.0289, -0.030694842, -0.0347, -0.0268, -0.0109, 0.0123, 0.0388, 
0.0667, 0.0935, 0.1188761, 0.14404428, 0.165397286, 0.177305698, 
0.172685504, 0.16635859, 0.146906018, 0.13022542, 0.11584568, 
0.10128963, 0.0889, 0.0761, 0.061671257, 0.0463, 0.0345, 0.0272, 
0.0235, 0.0224, 0.0277, 0.0456, 0.0692, 0.097282887, 0.127466559, 
0.1563797, 0.183938742, 0.212094188, 0.236660004, 0.253668547, 
0.255565405, 0.248764753, 0.234633446, 0.215978861, 0.198393226, 
0.182808876, 0.164734721, 0.146385312, 0.128663898, 0.111969113, 
0.0981, 0.085843563, 0.0766, 0.0701, 0.0684, 0.0744, 0.0971, 
0.122764707, 0.149359941, 0.180494189, 0.210311999, 0.167640004, 
0.149352003, 0.131064002, 0.121920002, 0.067056, 0.012192, 0.006096, 
0.064007998, 0.134111999, 0.146303997, 0.134111999, 0.140208003, 
0.155447997, 0.1524, 0.164592007, 0.134111999, 0.128015996, 0.109728004, 
0.100584004, 0.079247997, 0.051816001, 0.01524, -0.012192, -0.073151998, 
-0.121920002, -0.164592007, -0.192023999, -0.195071996, -0.210311999, 
-0.225552003, -0.188976001, -0.109728004, -0.054864002, -0.03048, 
-0.021336, -0.024383999, 0.01524, 0.009144, 0.045720002, 0.009144, 
0.036575999, 0.067056, 0.079247997, 0.097535998, 0.073151998, 
0.073151998, 0.021336, -0.024383999, -0.073151998, -0.109728004, 
-0.1524, -0.195071996, -0.198119993, -0.195071996, -0.192023999, 
-0.158495994, -0.103632001, -0.082296003, -0.067056, -0.057911999, 
-0.036575999, -0.003048, 0.036575999, 0.012192, 0.054864002, 
0.091440004, 0.118871996, 0.121920002, 0.121920002, 0.109728004, 
0.091440004, 0.048767999, 0.003048, -0.027432001, -0.042672, 
-0.073151998, -0.094488001, -0.100584004, -0.121920002, -0.0762, 
-0.03048, 0.021336, 0.009144, 0.01524, 0.054864002, 0.073151998, 
0.103632001, 0.085344, 0.134111999, 0.179831992, 0.198119993, 
0.213359996, 0.207264002, 0.216407993, 0.198119993, 0.164592007, 
0.118871996, 0.0762, 0.051816001, 0.03048, -0.012192, -0.027432001, 
-0.03048, -0.009144, 0.03048, 0.021336, 0.036575999, 0.042672, 
0.051816001, 0.073151998, 0.112776001, 0.094488001, 0.140208003, 
0.179831992, 0.204216005, 0.237743991, 0.231647997, 0.219456009, 
0.303, 0.282, 0.257, 0.23, 0.211, 0.178, 0.146, 0.122, 0.092, 
0.083, 0.042, 0.033, 0.04, 0.044, 0.061, 0.063, 0.07, 0.095, 
0.11, 0.135, 0.156, 0.165, 0.167, 0.153, 0.136, 0.112, 0.078, 
0.044, 0.015, -0.02, -0.046, -0.065, -0.096, -0.129, -0.141, 
-0.159, -0.147, -0.13, -0.123, -0.098, -0.08, -0.062, -0.026, 
0.009, 0.036, 0.059, 0.086, 0.106, 0.112, 0.101, 0.084, 0.055, 
0.033, 0.004, -0.026, -0.054, -0.082, -0.106, -0.125, -0.137, 
-0.143, -0.137, -0.127, -0.105, -0.08, -0.052, -0.027, 0.004, 
0.038, 0.079, 0.11, 0.133, 0.155, 0.165, 0.153, 0.142, 0.122, 
0.093, 0.065, 0.038, 0.01, -0.02, -0.042, -0.06, -0.065, -0.065, 
-0.05, -0.032, -0.006, 0.018, 0.046, 0.08, 0.116, 0.15, 0.186, 
0.213, 0.234, 0.246, 0.238, 0.224, 0.205, 0.172, 0.141, 0.113, 
0.079, 0.049, 0.026, 0.005, -0.01, -0.024, -0.023, -0.008, 0.006, 
0.025, 0.052, 0.083, 0.117, 0.153, 0.189)), .Names = c("Date", 
"id", "variable", "value"), row.names = c(1L, 2L, 3L, 4L, 5L, 
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 
32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 
45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 
58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 
71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L, 81L, 82L, 83L, 
84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 
97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 106L, 107L, 
108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L, 
119L, 6240L, 6241L, 6242L, 6243L, 6244L, 6245L, 6246L, 6247L, 
6248L, 6249L, 6250L, 6251L, 6252L, 6253L, 6254L, 6255L, 6256L, 
6257L, 6258L, 6259L, 6260L, 6261L, 6262L, 6263L, 6264L, 6265L, 
6266L, 6267L, 6268L, 6269L, 6270L, 6271L, 6272L, 6273L, 6274L, 
6275L, 6276L, 6277L, 6278L, 6279L, 6280L, 6281L, 6282L, 6283L, 
6284L, 6285L, 6286L, 6287L, 6288L, 6289L, 6290L, 6291L, 6292L, 
6293L, 6294L, 6295L, 6296L, 6297L, 6298L, 6299L, 6300L, 6301L, 
6302L, 6303L, 6304L, 6305L, 6306L, 6307L, 6308L, 6309L, 6310L, 
6311L, 6312L, 6313L, 6314L, 6315L, 6316L, 6317L, 6318L, 6319L, 
6320L, 6321L, 6322L, 6323L, 6324L, 6325L, 6326L, 6327L, 6328L, 
6329L, 6330L, 6331L, 6332L, 6333L, 6334L, 6335L, 6336L, 6337L, 
6338L, 6339L, 6340L, 6341L, 6342L, 6343L, 6344L, 6345L, 6346L, 
6347L, 6348L, 6349L, 6350L, 6351L, 6352L, 6353L, 6354L, 6355L, 
6356L, 6357L, 6358L, 12479L, 12480L, 12481L, 12482L, 12483L, 
12484L, 12485L, 12486L, 12487L, 12488L, 12489L, 12490L, 12491L, 
12492L, 12493L, 12494L, 12495L, 12496L, 12497L, 12498L, 12499L, 
12500L, 12501L, 12502L, 12503L, 12504L, 12505L, 12506L, 12507L, 
12508L, 12509L, 12510L, 12511L, 12512L, 12513L, 12514L, 12515L, 
12516L, 12517L, 12518L, 12519L, 12520L, 12521L, 12522L, 12523L, 
12524L, 12525L, 12526L, 12527L, 12528L, 12529L, 12530L, 12531L, 
12532L, 12533L, 12534L, 12535L, 12536L, 12537L, 12538L, 12539L, 
12540L, 12541L, 12542L, 12543L, 12544L, 12545L, 12546L, 12547L, 
12548L, 12549L, 12550L, 12551L, 12552L, 12553L, 12554L, 12555L, 
12556L, 12557L, 12558L, 12559L, 12560L, 12561L, 12562L, 12563L, 
12564L, 12565L, 12566L, 12567L, 12568L, 12569L, 12570L, 12571L, 
12572L, 12573L, 12574L, 12575L, 12576L, 12577L, 12578L, 12579L, 
12580L, 12581L, 12582L, 12583L, 12584L, 12585L, 12586L, 12587L, 
12588L, 12589L, 12590L, 12591L, 12592L, 12593L, 12594L, 12595L, 
12596L, 12597L, 18718L, 18719L, 18720L, 18721L, 18722L, 18723L, 
18724L, 18725L, 18726L, 18727L, 18728L, 18729L, 18730L, 18731L, 
18732L, 18733L, 18734L, 18735L, 18736L, 18737L, 18738L, 18739L, 
18740L, 18741L, 18742L, 18743L, 18744L, 18745L, 18746L, 18747L, 
18748L, 18749L, 18750L, 18751L, 18752L, 18753L, 18754L, 18755L, 
18756L, 18757L, 18758L, 18759L, 18760L, 18761L, 18762L, 18763L, 
18764L, 18765L, 18766L, 18767L, 18768L, 18769L, 18770L, 18771L, 
18772L, 18773L, 18774L, 18775L, 18776L, 18777L, 18778L, 18779L, 
18780L, 18781L, 18782L, 18783L, 18784L, 18785L, 18786L, 18787L, 
18788L, 18789L, 18790L, 18791L, 18792L, 18793L, 18794L, 18795L, 
18796L, 18797L, 18798L, 18799L, 18800L, 18801L, 18802L, 18803L, 
18804L, 18805L, 18806L, 18807L, 18808L, 18809L, 18810L, 18811L, 
18812L, 18813L, 18814L, 18815L, 18816L, 18817L, 18818L, 18819L, 
18820L, 18821L, 18822L, 18823L, 18824L, 18825L, 18826L, 18827L, 
18828L, 18829L, 18830L, 18831L, 18832L, 18833L, 18834L, 18835L, 
18836L), class = "data.frame")

我用来绘制图表的代码如下:

ggplot(jd1, aes(x=Date, y=value, colour =variable,linetype=variable))+geom_line()+facet_wrap(~id, ncol=1)

输出如下:

enter image description here

我只关注潮汐低点和低点。我想找到建模和观察点,然后用1:1线创建回归图。观察潮汐的下半部分甚至半部分都会有所帮助。谢谢你的帮助。

0 个答案:

没有答案