我正在试图弄清楚如何解决这个问题..这是从为12年级学生举办的编程竞赛中获取的。 任务是让学生'Karli'参加足够的课程以获得214学分。在进入考场之前,学生不能多于或少于214学分。门在图中表示。用户可以为其他课程重复上课,但他们必须离开那个教室......去另一个教室......然后回来。
我尝试手动执行此操作,并且能够找到一个带路径的解决方案:
数学代数的理念代数-数学建模演算建模考试
我正在尝试开发一种算法,该算法将根据所需的信用数量找到一条路径(即本案例为214)
这是我尝试过的东西并且坚持下去:
将地图表示为图形,门是两个节点之间的双边。但是我不知道哪种图形遍历算法可以让我解决这个问题呢?
将图形转换为邻接矩阵会使事情变得更容易吗?
谢谢
答案 0 :(得分:1)
Breadth First Search
将解决此问题。
当Karli到达编号为(room, credit)
且信用值记录在room
的房间时,记录状态credit
。
使用queue
维护数据。在开始时,只有(外部,0)在队列中。每次弹出头部,然后从head
描述的状态移至head
的每个邻居房间,然后计算新状态并将其推送到queue
的末尾(请记住使用哈希来避免多次添加相同的状态)。
当您达到状态(exam, 214)
时,展开过程就会完成。剩下的工作是从状态(exam, 214)
遍历。在BFS中获取新状态时,您还可以记录指向前驱状态的指针。
这是我的代码。
char name[][15] = {
"exam",
"stochastic",
"modeling",
"calculus",
"math",
"modern arts",
"algebra",
"philosophy",
"outside"
};
int credits[]={0, 23, 29, 20, 17, 17, 35, 32, 0};
int neighbour[][7]={
{ 1, 2, -1},
{ 2, 3, -1},
{ 0, 1, 3, 4, 5, -1},
{ 1, 2, 4,-1},
{ 2, 3, 6, -1},
{ 2, 6, 7, -1},
{ 4, 5, 7, -1},
{ 5, 6, -1},
{ 4, -1}
};
class Node{
public:
int pos;
int credit;
bool operator <( const Node a) const{
return pos < a.pos || pos == a.pos && credit < a.credit;
}
};
vector<Node> Q;
vector<int> pred;
set<Node> hash;
void bfs(){
int n = 9;
bool found = false;
hash.clear();
Node start;
start.pos = 8, start.credit = 0;
Q.push_back(start);
pred.push_back(-1);
hash.insert(start);
for(int f=0; f<Q.size(); ++f){
Node head = Q[f];
int pos = head.pos;
//printf("%d %d -> \n", head.pos, head.credit);
for(int i=0; neighbour[pos][i]!=-1; ++i){
Node tmp;
tmp.pos = neighbour[pos][i];
tmp.credit = head.credit + credits[tmp.pos];
if(tmp.credit > 214) continue;
if(hash.count(tmp)) continue;
if(tmp.credit !=214 && tmp.pos==0)continue; // if the credit is not 214, then it is not allowed to enter exame room(numbered as 0)
Q.push_back(tmp);
pred.push_back(f);
//printf(" -> %d, %d\n", tmp.pos, tmp.credit);
if(tmp.credit==214 && tmp.pos==0){
found = true;
break;
}
}
if(found)break;
}
stack<int> ss;
int idx = Q.size()-1;
while(true){
ss.push(Q[idx].pos);
if(pred[idx]!=-1) idx=pred[idx];
else break;
}
for(int credit=0; ss.size() > 0; ){
int pos = ss.top();
credit += credits[pos];
printf("%s(%d) ", name[pos], credit);
ss.pop();
}
printf("\n");
}
UPD1:抱歉,我在为neighbour[]
分配值时犯了一些错误。我解决了它。
UPD1:抱歉,进入考场时,我忘记检查学分是否为214。我解决了它。
UPD3:@Nuclearman表示它没有提供所有解决方案。我们只需要从代码中删除hash
,并在使用credit 214生成新状态时计算路径。我在此处提供新代码。
char name[][15] = {
"exam",
"stochastic",
"modeling",
"calculus",
"math",
"modern arts",
"algebra",
"philosophy",
"outside"
};
int credits[]={0, 23, 29, 20, 17, 17, 35, 32, 0};
int neighbour[][7]={
{ 1, 2, -1},
{ 2, 3, -1},
{ 0, 1, 3, 4, 5, -1},
{ 1, 2, 4,-1},
{ 2, 3, 6, -1},
{ 2, 6, 7, -1},
{ 4, 5, 7, -1},
{ 5, 6, -1},
{ 4, -1}
};
class Node{
public:
int pos;
int credit;
bool operator <( const Node a) const{
return pos < a.pos || pos == a.pos && credit < a.credit;
}
};
vector<Node> Q;
vector<int> pred;
set<Node> hash;
void outputpath(){
stack<int> ss;
int idx = Q.size()-1;
while(true){
ss.push(Q[idx].pos);
if(pred[idx]!=-1) idx=pred[idx];
else break;
}
for(int credit=0; ss.size() > 0; ){
int pos = ss.top();
credit += credits[pos];
printf("%s(%d) ", name[pos], credit);
ss.pop();
}
printf("\n");
}
void bfs(){
int n = 9;
bool found = false;
hash.clear();
Node start;
start.pos = 8, start.credit = 0;
Q.push_back(start);
pred.push_back(-1);
hash.insert(start);
for(int f=0; f<Q.size(); ++f){
Node head = Q[f];
int pos = head.pos;
for(int i=0; neighbour[pos][i]!=-1; ++i){
Node tmp;
tmp.pos = neighbour[pos][i];
tmp.credit = head.credit + credits[tmp.pos];
if(tmp.credit > 214) continue;
if(hash.count(tmp)) continue;
if(tmp.credit !=214 && tmp.pos==0)continue;
Q.push_back(tmp);
pred.push_back(f);
if(tmp.credit==214 && tmp.pos==0){
outputpath();
/* uncomment the next line to get only one solution*/
//found = true;
break;
}
}
if(found)break;
}
}
答案 1 :(得分:0)
这是Haskell中的一个版本,从检查室向后生成路径并丢弃信用额大于要求的路径:
import Data.Maybe (fromJust)
import Control.Monad (guard)
classes = [("exam",["modeling"])
,("modeling",["exam","stochastic","calculus","math","modern arts"])
,("stochastic",["calculus","modeling"])
,("calculus",["stochastic","modeling","math"])
,("math",["calculus","modeling","algebra"])
,("algebra",["math","philosophy"])
,("philosophy",["algebra","modern arts"])
,("modern arts",["philosophy","modeling"])]
credits = [("exam",0)
,("modeling",29)
,("stochastic",23)
,("calculus",20)
,("math",17)
,("algebra",35)
,("philosophy",32)
,("modern arts",17)]
solve requirement = solve' ["exam"] 0 where
solve' path creditsSoFar =
if creditsSoFar == requirement && head path == "math"
then [path]
else do
next <- fromJust (lookup (head path) classes)
guard (next /= "exam"
&& creditsSoFar + fromJust (lookup next credits) <= requirement)
solve' (next:path) (creditsSoFar + fromJust (lookup next credits))
输出:
*Main> solve 214
[["math","algebra","philosophy","algebra","math","modeling","calculus","modeling","exam"]
,["math","calculus","math","calculus","math","calculus","math","calculus","math","calculus","modeling","exam"]
,["math","algebra","philosophy","modern arts","philosophy","algebra","math","modeling","exam"]]
(0.19 secs, 9106396 bytes)