我对C ++和编码相对较新,在尝试将图像转换为浮点图像时遇到了问题。我试图通过计算图像像素强度的平均值和标准偏差来消除舍入误差,因为它开始大大影响数据。我的代码如下。
Mat img = imread("Cells2.tif");
cv::namedWindow("stuff", CV_WINDOW_NORMAL);
cv::imshow("stuff",img);
CvMat cvmat = img;
Mat dst = cvCreateImage(cvGetSize(&cvmat),IPL_DEPTH_32F,1);
cvConvertScale(&cvmat,&dst);
cvScale(&dst,&dst,1.0/255);
cvNamedWindow("Test",CV_WINDOW_NORMAL);
cvShowImage("Test",&dst);
我遇到了这个错误
OpenCV错误:未知函数中的错误参数(数组应为CvMat或IplImage),文件...... \ modules \ core \ src \ array.cpp,第1238行
我到处寻找,每个人都说要将img转换为我在上面尝试过的CvMat。 当我这样做时,上面的代码显示我得到 OpenCV错误:未知函数中的错误参数(未知数组类型),文件...... \ modules \ core \ src \ matrix.cpp第697行
提前感谢您的帮助。
答案 0 :(得分:0)
只需使用C ++ OpenCV接口而不是C接口,并使用convertTo
函数在数据类型之间进行转换。
Mat img = imread("Cells2.tif");
cv::imshow("source",img);
Mat dst; // destination image
// check if we have RGB or grayscale image
if (img.channels() == 3) {
// convert 3-channel (RGB) 8-bit uchar image to 32 bit float
src.convertTo(dst, CV_32FC3);
}
else if (img.channels() == 1) {
// convert 1-chanel (grayscale) 8-bit uchar image to 32 bit float
img1.convertTo(dst, CV_32FC1);
}
// display output, note that to display dst image correctly
// we have to divide each element of dst by 255 to keep
// the pixel values in the range [0,1].
cv::imshow("output",dst/255);
waitKey();
问题的第二部分计算dst
cv::Salar avg_pixel;
double avg;
// note that Scalar is a vector.
// If your image is RGB, Scalar will contain 3 values,
// representing color values for each channel.
avg_pixel = cv::mean(dst);
if (dst.channels() == 3) {
//if 3 channels
avg = (avg_pixel[0] + avg_pixel[1] + avg_pixel[2]) / 3;
}
if(dst.channels() == 1) {
avg = avg_pixel[0];
}
cout << "average element of m: " << avg << endl;
答案 1 :(得分:0)
这是我在C ++ OpenCV中计算平均值的代码。
int NumPixels = img.total();
double avg;
double c;
for(int y = 0; y <= img.cols; y++)
for(int x = 0; x <= dst.rows; x++)
c+=img.at<uchar>(x,y);
avg = c/NumPixels;
cout << "Avg Value\n" << 255*avg;
对于MATLAB我只需加载图像并取Q = mean(img(:));返回1776.23 并且对于1612.36的返回,我使用了cv:Scalar z = mean(dst);