C语言中的快速4x4矩阵乘法

时间:2009-11-04 14:15:46

标签: iphone c arm neon

我试图找到一个函数的优化C或汇编程序实现,它将两个4x4矩阵相互相乘。该平台是基于ARM6或ARM7的iPhone或iPod。

目前,我使用的是一种相当标准的方法 - 只需一点循环展开。

#define O(y,x) (y + (x<<2))

static inline void Matrix4x4MultiplyBy4x4 (float *src1, float *src2, float *dest)
{
    *(dest+O(0,0)) = (*(src1+O(0,0)) * *(src2+O(0,0))) + (*(src1+O(0,1)) * *(src2+O(1,0))) + (*(src1+O(0,2)) * *(src2+O(2,0))) + (*(src1+O(0,3)) * *(src2+O(3,0))); 
    *(dest+O(0,1)) = (*(src1+O(0,0)) * *(src2+O(0,1))) + (*(src1+O(0,1)) * *(src2+O(1,1))) + (*(src1+O(0,2)) * *(src2+O(2,1))) + (*(src1+O(0,3)) * *(src2+O(3,1))); 
    *(dest+O(0,2)) = (*(src1+O(0,0)) * *(src2+O(0,2))) + (*(src1+O(0,1)) * *(src2+O(1,2))) + (*(src1+O(0,2)) * *(src2+O(2,2))) + (*(src1+O(0,3)) * *(src2+O(3,2))); 
    *(dest+O(0,3)) = (*(src1+O(0,0)) * *(src2+O(0,3))) + (*(src1+O(0,1)) * *(src2+O(1,3))) + (*(src1+O(0,2)) * *(src2+O(2,3))) + (*(src1+O(0,3)) * *(src2+O(3,3))); 
    *(dest+O(1,0)) = (*(src1+O(1,0)) * *(src2+O(0,0))) + (*(src1+O(1,1)) * *(src2+O(1,0))) + (*(src1+O(1,2)) * *(src2+O(2,0))) + (*(src1+O(1,3)) * *(src2+O(3,0))); 
    *(dest+O(1,1)) = (*(src1+O(1,0)) * *(src2+O(0,1))) + (*(src1+O(1,1)) * *(src2+O(1,1))) + (*(src1+O(1,2)) * *(src2+O(2,1))) + (*(src1+O(1,3)) * *(src2+O(3,1))); 
    *(dest+O(1,2)) = (*(src1+O(1,0)) * *(src2+O(0,2))) + (*(src1+O(1,1)) * *(src2+O(1,2))) + (*(src1+O(1,2)) * *(src2+O(2,2))) + (*(src1+O(1,3)) * *(src2+O(3,2))); 
    *(dest+O(1,3)) = (*(src1+O(1,0)) * *(src2+O(0,3))) + (*(src1+O(1,1)) * *(src2+O(1,3))) + (*(src1+O(1,2)) * *(src2+O(2,3))) + (*(src1+O(1,3)) * *(src2+O(3,3))); 
    *(dest+O(2,0)) = (*(src1+O(2,0)) * *(src2+O(0,0))) + (*(src1+O(2,1)) * *(src2+O(1,0))) + (*(src1+O(2,2)) * *(src2+O(2,0))) + (*(src1+O(2,3)) * *(src2+O(3,0))); 
    *(dest+O(2,1)) = (*(src1+O(2,0)) * *(src2+O(0,1))) + (*(src1+O(2,1)) * *(src2+O(1,1))) + (*(src1+O(2,2)) * *(src2+O(2,1))) + (*(src1+O(2,3)) * *(src2+O(3,1))); 
    *(dest+O(2,2)) = (*(src1+O(2,0)) * *(src2+O(0,2))) + (*(src1+O(2,1)) * *(src2+O(1,2))) + (*(src1+O(2,2)) * *(src2+O(2,2))) + (*(src1+O(2,3)) * *(src2+O(3,2))); 
    *(dest+O(2,3)) = (*(src1+O(2,0)) * *(src2+O(0,3))) + (*(src1+O(2,1)) * *(src2+O(1,3))) + (*(src1+O(2,2)) * *(src2+O(2,3))) + (*(src1+O(2,3)) * *(src2+O(3,3))); 
    *(dest+O(3,0)) = (*(src1+O(3,0)) * *(src2+O(0,0))) + (*(src1+O(3,1)) * *(src2+O(1,0))) + (*(src1+O(3,2)) * *(src2+O(2,0))) + (*(src1+O(3,3)) * *(src2+O(3,0))); 
    *(dest+O(3,1)) = (*(src1+O(3,0)) * *(src2+O(0,1))) + (*(src1+O(3,1)) * *(src2+O(1,1))) + (*(src1+O(3,2)) * *(src2+O(2,1))) + (*(src1+O(3,3)) * *(src2+O(3,1))); 
    *(dest+O(3,2)) = (*(src1+O(3,0)) * *(src2+O(0,2))) + (*(src1+O(3,1)) * *(src2+O(1,2))) + (*(src1+O(3,2)) * *(src2+O(2,2))) + (*(src1+O(3,3)) * *(src2+O(3,2))); 
    *(dest+O(3,3)) = (*(src1+O(3,0)) * *(src2+O(0,3))) + (*(src1+O(3,1)) * *(src2+O(1,3))) + (*(src1+O(3,2)) * *(src2+O(2,3))) + (*(src1+O(3,3)) * *(src2+O(3,3))); 
};

使用Strassen或Coppersmith-Winograd算法我会受益吗?

5 个答案:

答案 0 :(得分:36)

不,Strassen或Coppersmith-Winograd算法在这里没有太大区别。他们开始只为更大的矩阵付出代价。

如果您的矩阵乘法确实是一个瓶颈,您可以使用NEON SIMD指令重写算法。这只会对ARMv7有所帮助,因为ARMv6没有这个扩展。

对于你的情况,我希望在编译的C代码上加速3倍。

编辑:你可以在这里找到一个很好的ARM-NEON实现:http://code.google.com/p/math-neon/

对于您的C代码,您可以采取两项措施来加速代码:

  1. 不要内联函数。矩阵乘法会在展开时产生相当多的代码,而ARM只有一个非常小的指令缓存。过多的内联会使代码变慢,因为CPU会忙于将代码加载到缓存中而不是执行它。

  2. 使用restrict关键字告诉编译器源指针和目标指针在内存中不重叠。目前,只要写入结果,编译器就会被迫从内存中重新加载每个源值,因为它必须假设源和目标可能重叠甚至指向同一个内存。

答案 1 :(得分:20)

只是挑剔。我想知道为什么人们仍然会自愿地混淆他们的代码? C已经难以阅读,无需添加。

static inline void Matrix4x4MultiplyBy4x4 (float src1[4][4], float src2[4][4], float dest[4][4])
{
dest[0][0] = src1[0][0] * src2[0][0] + src1[0][1] * src2[1][0] + src1[0][2] * src2[2][0] + src1[0][3] * src2[3][0]; 
dest[0][1] = src1[0][0] * src2[0][1] + src1[0][1] * src2[1][1] + src1[0][2] * src2[2][1] + src1[0][3] * src2[3][1]; 
dest[0][2] = src1[0][0] * src2[0][2] + src1[0][1] * src2[1][2] + src1[0][2] * src2[2][2] + src1[0][3] * src2[3][2]; 
dest[0][3] = src1[0][0] * src2[0][3] + src1[0][1] * src2[1][3] + src1[0][2] * src2[2][3] + src1[0][3] * src2[3][3]; 
dest[1][0] = src1[1][0] * src2[0][0] + src1[1][1] * src2[1][0] + src1[1][2] * src2[2][0] + src1[1][3] * src2[3][0]; 
dest[1][1] = src1[1][0] * src2[0][1] + src1[1][1] * src2[1][1] + src1[1][2] * src2[2][1] + src1[1][3] * src2[3][1]; 
dest[1][2] = src1[1][0] * src2[0][2] + src1[1][1] * src2[1][2] + src1[1][2] * src2[2][2] + src1[1][3] * src2[3][2]; 
dest[1][3] = src1[1][0] * src2[0][3] + src1[1][1] * src2[1][3] + src1[1][2] * src2[2][3] + src1[1][3] * src2[3][3]; 
dest[2][0] = src1[2][0] * src2[0][0] + src1[2][1] * src2[1][0] + src1[2][2] * src2[2][0] + src1[2][3] * src2[3][0]; 
dest[2][1] = src1[2][0] * src2[0][1] + src1[2][1] * src2[1][1] + src1[2][2] * src2[2][1] + src1[2][3] * src2[3][1]; 
dest[2][2] = src1[2][0] * src2[0][2] + src1[2][1] * src2[1][2] + src1[2][2] * src2[2][2] + src1[2][3] * src2[3][2]; 
dest[2][3] = src1[2][0] * src2[0][3] + src1[2][1] * src2[1][3] + src1[2][2] * src2[2][3] + src1[2][3] * src2[3][3]; 
dest[3][0] = src1[3][0] * src2[0][0] + src1[3][1] * src2[1][0] + src1[3][2] * src2[2][0] + src1[3][3] * src2[3][0]; 
dest[3][1] = src1[3][0] * src2[0][1] + src1[3][1] * src2[1][1] + src1[3][2] * src2[2][1] + src1[3][3] * src2[3][1]; 
dest[3][2] = src1[3][0] * src2[0][2] + src1[3][1] * src2[1][2] + src1[3][2] * src2[2][2] + src1[3][3] * src2[3][2]; 
dest[3][3] = src1[3][0] * src2[0][3] + src1[3][1] * src2[1][3] + src1[3][2] * src2[2][3] + src1[3][3] * src2[3][3]; 
};

答案 2 :(得分:3)

您确定展开的代码比基于显式循环的方法更快吗?请注意,编译器通常比执行优化的人更好!

事实上,我敢打赌,编译器有更多机会从编写良好的循环中自动发出SIMD指令,而不是从一系列“无关”语句中发出......

您还可以在参数声明中指定矩阵大小。然后你可以使用普通的括号语法来访问元素,它也可以是编译器进行优化的一个很好的提示。

答案 3 :(得分:2)

您完全展开的传统产品可能非常快。

你的矩阵太小了,无法克服传统形式的Strassen乘法与显式索引和分区代码的无法管理;你可能会对优化失去任何影响。

但是如果你想要快速,我会使用SIMD指令(如果有的话)。如果ARM芯片最近没有它们,我会感到惊讶。如果他们这样做,您可以在一条指令中管理行/列中的所有产品;如果SIMD为8宽,则可以在单条指令中管理 2 行/列乘法。将操作数设置为执行该指令可能需要一些跳舞; SIMD指令将轻松拾取您的行(相邻值),但不会拾取列(非连续)。并且可能需要花费一些精力来计算行/列中的产品总和。

答案 4 :(得分:2)

这些任意矩阵还是有任何对称性?如果是这样,通常可以利用这些对称性来提高性能(例如在旋转矩阵中)。

另外,我同意上面的fortran,并会运行一些时序测试来验证您的手展开代码比优化编译器可以创建的更快。至少,您可以简化代码。