我的应用程序:我正在尝试旋转图像(使用OpenCV和Python)
目前我开发了以下代码,用于旋转输入图像,用黑色边框填充它,给我A.我想要的是B - 旋转图像中最大可能区域裁剪窗口。我把它称为轴对齐的边界框。
这与Rotate and crop基本相同,但我无法在该问题上得到答案。此外,该答案显然仅对方形图像有效。我的图像是矩形的。
代码给A:
import cv2
import numpy as np
def getTranslationMatrix2d(dx, dy):
"""
Returns a numpy affine transformation matrix for a 2D translation of
(dx, dy)
"""
return np.matrix([[1, 0, dx], [0, 1, dy], [0, 0, 1]])
def rotateImage(image, angle):
"""
Rotates the given image about it's centre
"""
image_size = (image.shape[1], image.shape[0])
image_center = tuple(np.array(image_size) / 2)
rot_mat = np.vstack([cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]])
trans_mat = np.identity(3)
w2 = image_size[0] * 0.5
h2 = image_size[1] * 0.5
rot_mat_notranslate = np.matrix(rot_mat[0:2, 0:2])
tl = (np.array([-w2, h2]) * rot_mat_notranslate).A[0]
tr = (np.array([w2, h2]) * rot_mat_notranslate).A[0]
bl = (np.array([-w2, -h2]) * rot_mat_notranslate).A[0]
br = (np.array([w2, -h2]) * rot_mat_notranslate).A[0]
x_coords = [pt[0] for pt in [tl, tr, bl, br]]
x_pos = [x for x in x_coords if x > 0]
x_neg = [x for x in x_coords if x < 0]
y_coords = [pt[1] for pt in [tl, tr, bl, br]]
y_pos = [y for y in y_coords if y > 0]
y_neg = [y for y in y_coords if y < 0]
right_bound = max(x_pos)
left_bound = min(x_neg)
top_bound = max(y_pos)
bot_bound = min(y_neg)
new_w = int(abs(right_bound - left_bound))
new_h = int(abs(top_bound - bot_bound))
new_image_size = (new_w, new_h)
new_midx = new_w * 0.5
new_midy = new_h * 0.5
dx = int(new_midx - w2)
dy = int(new_midy - h2)
trans_mat = getTranslationMatrix2d(dx, dy)
affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :]
result = cv2.warpAffine(image, affine_mat, new_image_size, flags=cv2.INTER_LINEAR)
return result
答案 0 :(得分:81)
此解决方案/实现背后的数学等价于this solution of an analagous question,但公式已简化并避免出现奇点。这是与其他解决方案具有相同接口的python代码largest_rotated_rect
,但几乎在所有情况下都提供了更大的区域(始终是经过验证的最佳):
def rotatedRectWithMaxArea(w, h, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
radians), computes the width and height of the largest possible
axis-aligned rectangle (maximal area) within the rotated rectangle.
"""
if w <= 0 or h <= 0:
return 0,0
width_is_longer = w >= h
side_long, side_short = (w,h) if width_is_longer else (h,w)
# since the solutions for angle, -angle and 180-angle are all the same,
# if suffices to look at the first quadrant and the absolute values of sin,cos:
sin_a, cos_a = abs(math.sin(angle)), abs(math.cos(angle))
if side_short <= 2.*sin_a*cos_a*side_long or abs(sin_a-cos_a) < 1e-10:
# half constrained case: two crop corners touch the longer side,
# the other two corners are on the mid-line parallel to the longer line
x = 0.5*side_short
wr,hr = (x/sin_a,x/cos_a) if width_is_longer else (x/cos_a,x/sin_a)
else:
# fully constrained case: crop touches all 4 sides
cos_2a = cos_a*cos_a - sin_a*sin_a
wr,hr = (w*cos_a - h*sin_a)/cos_2a, (h*cos_a - w*sin_a)/cos_2a
return wr,hr
以下是该功能与其他解决方案的比较:
>>> wl,hl = largest_rotated_rect(1500,500,math.radians(20))
>>> print (wl,hl),', area=',wl*hl
(828.2888697391496, 230.61639227890998) , area= 191016.990904
>>> wm,hm = rotatedRectWithMaxArea(1500,500,math.radians(20))
>>> print (wm,hm),', area=',wm*hm
(730.9511000407718, 266.044443118978) , area= 194465.478358
在a
{@ 1}}中,旋转图像的边界框(宽度[0,pi/2[
,高度w
)具有以下尺寸:
h
w_bb = w*cos(a) + h*sin(a)
如果h_bb = w*sin(a) + h*cos(a)
,w_r
是计算出的裁剪图像的最佳宽度和高度,则来自边界框的插图为:
h_r
(w_bb-w_r)/2
<强>证明:强>
在具有最大面积的两条平行线之间寻找轴对齐的矩形是具有一个参数的优化问题,例如, (h_bb-h_r)/2
如下图所示:
让x
表示两条平行线之间的距离(它将变成旋转矩形的较短边)。然后,所追求的矩形的边s
,a
与b
,x
等具有恒定的比率,即x = asinα和(sx) = bcosα:
因此,最大化区域s-x
意味着最大化a*b
。由于直角三角形的“高度定理”,我们知道x*(s-x)
。因此,在x*(s-x) = p*q = h*h
达到最大面积,即平行线之间的两个角E,G位于中线:
此解决方案仅在此最大矩形适合旋转的矩形时有效。因此,对角线x = s-x = s/2
不得长于旋转矩形的另一侧EG
。从那以后
EG = AF + DH = s / 2 *(cotα+tanα)= s /(2 *sinαcosα)= s / sin 2 α
条件s≤l sin 2 α,其中s和l是旋转矩形的较短和较长边。
在s&gt;的情况下l sin 2 α参数l
必须小于(s / 2)和s.t.所追求的矩形的所有角落都在旋转的矩形的一侧。这导致了等式
x *cotα+(s-x)*tanα= 1
给出x =sinα(l cosα - s sinα)/ cos 2 α。从a = x /sinα和b =(s-x)/cosα得到上面使用的公式。
答案 1 :(得分:24)
因此,在调查了许多声称的解决方案之后,我终于找到了一种有效的方法; Andri和Magnus Hoff对Calculate largest rectangle in a rotated rectangle的答案。
以下Python代码包含感兴趣的方法 - largest_rotated_rect
- 以及一个简短的演示。
import math
import cv2
import numpy as np
def rotate_image(image, angle):
"""
Rotates an OpenCV 2 / NumPy image about it's centre by the given angle
(in degrees). The returned image will be large enough to hold the entire
new image, with a black background
"""
# Get the image size
# No that's not an error - NumPy stores image matricies backwards
image_size = (image.shape[1], image.shape[0])
image_center = tuple(np.array(image_size) / 2)
# Convert the OpenCV 3x2 rotation matrix to 3x3
rot_mat = np.vstack(
[cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]]
)
rot_mat_notranslate = np.matrix(rot_mat[0:2, 0:2])
# Shorthand for below calcs
image_w2 = image_size[0] * 0.5
image_h2 = image_size[1] * 0.5
# Obtain the rotated coordinates of the image corners
rotated_coords = [
(np.array([-image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([ image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([-image_w2, -image_h2]) * rot_mat_notranslate).A[0],
(np.array([ image_w2, -image_h2]) * rot_mat_notranslate).A[0]
]
# Find the size of the new image
x_coords = [pt[0] for pt in rotated_coords]
x_pos = [x for x in x_coords if x > 0]
x_neg = [x for x in x_coords if x < 0]
y_coords = [pt[1] for pt in rotated_coords]
y_pos = [y for y in y_coords if y > 0]
y_neg = [y for y in y_coords if y < 0]
right_bound = max(x_pos)
left_bound = min(x_neg)
top_bound = max(y_pos)
bot_bound = min(y_neg)
new_w = int(abs(right_bound - left_bound))
new_h = int(abs(top_bound - bot_bound))
# We require a translation matrix to keep the image centred
trans_mat = np.matrix([
[1, 0, int(new_w * 0.5 - image_w2)],
[0, 1, int(new_h * 0.5 - image_h2)],
[0, 0, 1]
])
# Compute the tranform for the combined rotation and translation
affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :]
# Apply the transform
result = cv2.warpAffine(
image,
affine_mat,
(new_w, new_h),
flags=cv2.INTER_LINEAR
)
return result
def largest_rotated_rect(w, h, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
radians), computes the width and height of the largest possible
axis-aligned rectangle within the rotated rectangle.
Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
Converted to Python by Aaron Snoswell
"""
quadrant = int(math.floor(angle / (math.pi / 2))) & 3
sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
alpha = (sign_alpha % math.pi + math.pi) % math.pi
bb_w = w * math.cos(alpha) + h * math.sin(alpha)
bb_h = w * math.sin(alpha) + h * math.cos(alpha)
gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)
delta = math.pi - alpha - gamma
length = h if (w < h) else w
d = length * math.cos(alpha)
a = d * math.sin(alpha) / math.sin(delta)
y = a * math.cos(gamma)
x = y * math.tan(gamma)
return (
bb_w - 2 * x,
bb_h - 2 * y
)
def crop_around_center(image, width, height):
"""
Given a NumPy / OpenCV 2 image, crops it to the given width and height,
around it's centre point
"""
image_size = (image.shape[1], image.shape[0])
image_center = (int(image_size[0] * 0.5), int(image_size[1] * 0.5))
if(width > image_size[0]):
width = image_size[0]
if(height > image_size[1]):
height = image_size[1]
x1 = int(image_center[0] - width * 0.5)
x2 = int(image_center[0] + width * 0.5)
y1 = int(image_center[1] - height * 0.5)
y2 = int(image_center[1] + height * 0.5)
return image[y1:y2, x1:x2]
def demo():
"""
Demos the largest_rotated_rect function
"""
image = cv2.imread("lenna_rectangle.png")
image_height, image_width = image.shape[0:2]
cv2.imshow("Original Image", image)
print "Press [enter] to begin the demo"
print "Press [q] or Escape to quit"
key = cv2.waitKey(0)
if key == ord("q") or key == 27:
exit()
for i in np.arange(0, 360, 0.5):
image_orig = np.copy(image)
image_rotated = rotate_image(image, i)
image_rotated_cropped = crop_around_center(
image_rotated,
*largest_rotated_rect(
image_width,
image_height,
math.radians(i)
)
)
key = cv2.waitKey(2)
if(key == ord("q") or key == 27):
exit()
cv2.imshow("Original Image", image_orig)
cv2.imshow("Rotated Image", image_rotated)
cv2.imshow("Cropped Image", image_rotated_cropped)
print "Done"
if __name__ == "__main__":
demo()
只需将this image(裁剪以证明它适用于非方形图像)放在与上述文件相同的目录中,然后运行它。
答案 2 :(得分:14)
祝贺伟大的工作!我想在OpenCV中使用你的代码和C ++库,所以我做了下面的转换。也许这种方法对其他人有帮助。
#include <iostream>
#include <opencv.hpp>
#define PI 3.14159265359
using namespace std;
double degree_to_radian(double angle)
{
return angle * PI / 180;
}
cv::Mat rotate_image (cv::Mat image, double angle)
{
// Rotates an OpenCV 2 image about its centre by the given angle
// (in radians). The returned image will be large enough to hold the entire
// new image, with a black background
cv::Size image_size = cv::Size(image.rows, image.cols);
cv::Point image_center = cv::Point(image_size.height/2, image_size.width/2);
// Convert the OpenCV 3x2 matrix to 3x3
cv::Mat rot_mat = cv::getRotationMatrix2D(image_center, angle, 1.0);
double row[3] = {0.0, 0.0, 1.0};
cv::Mat new_row = cv::Mat(1, 3, rot_mat.type(), row);
rot_mat.push_back(new_row);
double slice_mat[2][2] = {
{rot_mat.col(0).at<double>(0), rot_mat.col(1).at<double>(0)},
{rot_mat.col(0).at<double>(1), rot_mat.col(1).at<double>(1)}
};
cv::Mat rot_mat_nontranslate = cv::Mat(2, 2, rot_mat.type(), slice_mat);
double image_w2 = image_size.width * 0.5;
double image_h2 = image_size.height * 0.5;
// Obtain the rotated coordinates of the image corners
std::vector<cv::Mat> rotated_coords;
double image_dim_d_1[2] = { -image_h2, image_w2 };
cv::Mat image_dim = cv::Mat(1, 2, rot_mat.type(), image_dim_d_1);
rotated_coords.push_back(cv::Mat(image_dim * rot_mat_nontranslate));
double image_dim_d_2[2] = { image_h2, image_w2 };
image_dim = cv::Mat(1, 2, rot_mat.type(), image_dim_d_2);
rotated_coords.push_back(cv::Mat(image_dim * rot_mat_nontranslate));
double image_dim_d_3[2] = { -image_h2, -image_w2 };
image_dim = cv::Mat(1, 2, rot_mat.type(), image_dim_d_3);
rotated_coords.push_back(cv::Mat(image_dim * rot_mat_nontranslate));
double image_dim_d_4[2] = { image_h2, -image_w2 };
image_dim = cv::Mat(1, 2, rot_mat.type(), image_dim_d_4);
rotated_coords.push_back(cv::Mat(image_dim * rot_mat_nontranslate));
// Find the size of the new image
vector<double> x_coords, x_pos, x_neg;
for (int i = 0; i < rotated_coords.size(); i++)
{
double pt = rotated_coords[i].col(0).at<double>(0);
x_coords.push_back(pt);
if (pt > 0)
x_pos.push_back(pt);
else
x_neg.push_back(pt);
}
vector<double> y_coords, y_pos, y_neg;
for (int i = 0; i < rotated_coords.size(); i++)
{
double pt = rotated_coords[i].col(1).at<double>(0);
y_coords.push_back(pt);
if (pt > 0)
y_pos.push_back(pt);
else
y_neg.push_back(pt);
}
double right_bound = *max_element(x_pos.begin(), x_pos.end());
double left_bound = *min_element(x_neg.begin(), x_neg.end());
double top_bound = *max_element(y_pos.begin(), y_pos.end());
double bottom_bound = *min_element(y_neg.begin(), y_neg.end());
int new_w = int(abs(right_bound - left_bound));
int new_h = int(abs(top_bound - bottom_bound));
// We require a translation matrix to keep the image centred
double trans_mat[3][3] = {
{1, 0, int(new_w * 0.5 - image_w2)},
{0, 1, int(new_h * 0.5 - image_h2)},
{0, 0, 1},
};
// Compute the transform for the combined rotation and translation
cv::Mat aux_affine_mat = (cv::Mat(3, 3, rot_mat.type(), trans_mat) * rot_mat);
cv::Mat affine_mat = cv::Mat(2, 3, rot_mat.type(), NULL);
affine_mat.push_back(aux_affine_mat.row(0));
affine_mat.push_back(aux_affine_mat.row(1));
// Apply the transform
cv::Mat output;
cv::warpAffine(image, output, affine_mat, cv::Size(new_h, new_w), cv::INTER_LINEAR);
return output;
}
cv::Size largest_rotated_rect(int h, int w, double angle)
{
// Given a rectangle of size wxh that has been rotated by 'angle' (in
// radians), computes the width and height of the largest possible
// axis-aligned rectangle within the rotated rectangle.
// Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
// Converted to Python by Aaron Snoswell (https://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders)
// Converted to C++ by Eliezer Bernart
int quadrant = int(floor(angle/(PI/2))) & 3;
double sign_alpha = ((quadrant & 1) == 0) ? angle : PI - angle;
double alpha = fmod((fmod(sign_alpha, PI) + PI), PI);
double bb_w = w * cos(alpha) + h * sin(alpha);
double bb_h = w * sin(alpha) + h * cos(alpha);
double gamma = w < h ? atan2(bb_w, bb_w) : atan2(bb_h, bb_h);
double delta = PI - alpha - gamma;
int length = w < h ? h : w;
double d = length * cos(alpha);
double a = d * sin(alpha) / sin(delta);
double y = a * cos(gamma);
double x = y * tan(gamma);
return cv::Size(bb_w - 2 * x, bb_h - 2 * y);
}
// for those interested in the actual optimum - contributed by coproc
#include <algorithm>
cv::Size really_largest_rotated_rect(int h, int w, double angle)
{
// Given a rectangle of size wxh that has been rotated by 'angle' (in
// radians), computes the width and height of the largest possible
// axis-aligned rectangle within the rotated rectangle.
if (w <= 0 || h <= 0)
return cv::Size(0,0);
bool width_is_longer = w >= h;
int side_long = w, side_short = h;
if (!width_is_longer)
std::swap(side_long, side_short);
// since the solutions for angle, -angle and pi-angle are all the same,
// it suffices to look at the first quadrant and the absolute values of sin,cos:
double sin_a = fabs(math.sin(angle)), cos_a = fabs(math.cos(angle));
double wr,hr;
if (side_short <= 2.*sin_a*cos_a*side_long)
{
// half constrained case: two crop corners touch the longer side,
// the other two corners are on the mid-line parallel to the longer line
x = 0.5*side_short;
wr = x/sin_a;
hr = x/cos_a;
if (!width_is_longer)
std::swap(wr,hr);
}
else
{
// fully constrained case: crop touches all 4 sides
double cos_2a = cos_a*cos_a - sin_a*sin_a;
wr = (w*cos_a - h*sin_a)/cos_2a;
hr = (h*cos_a - w*sin_a)/cos_2a;
}
return cv::Size(wr,hr);
}
cv::Mat crop_around_center(cv::Mat image, int height, int width)
{
// Given a OpenCV 2 image, crops it to the given width and height,
// around it's centre point
cv::Size image_size = cv::Size(image.rows, image.cols);
cv::Point image_center = cv::Point(int(image_size.height * 0.5), int(image_size.width * 0.5));
if (width > image_size.width)
width = image_size.width;
if (height > image_size.height)
height = image_size.height;
int x1 = int(image_center.x - width * 0.5);
int x2 = int(image_center.x + width * 0.5);
int y1 = int(image_center.y - height * 0.5);
int y2 = int(image_center.y + height * 0.5);
return image(cv::Rect(cv::Point(y1, x1), cv::Point(y2,x2)));
}
void demo(cv::Mat image)
{
// Demos the largest_rotated_rect function
int image_height = image.rows;
int image_width = image.cols;
for (float i = 0.0; i < 360.0; i+=0.5)
{
cv::Mat image_orig = image.clone();
cv::Mat image_rotated = rotate_image(image, i);
cv::Size largest_rect = largest_rotated_rect(image_height, image_width, degree_to_radian(i));
// for those who trust math (added by coproc):
cv::Size largest_rect2 = really_largest_rotated_rect(image_height, image_width, degree_to_radian(i));
cout << "area1 = " << largest_rect.height * largest_rect.width << endl;
cout << "area2 = " << largest_rect2.height * largest_rect2.width << endl;
cv::Mat image_rotated_cropped = crop_around_center(
image_rotated,
largest_rect.height,
largest_rect.width
);
cv::imshow("Original Image", image_orig);
cv::imshow("Rotated Image", image_rotated);
cv::imshow("Cropped image", image_rotated_cropped);
if (char(cv::waitKey(15)) == 'q')
break;
}
}
int main (int argc, char* argv[])
{
cv::Mat image = cv::imread(argv[1]);
if (image.empty())
{
cout << "> The input image was not found." << endl;
exit(EXIT_FAILURE);
}
cout << "Press [s] to begin or restart the demo" << endl;
cout << "Press [q] to quit" << endl;
while (true)
{
cv::imshow("Original Image", image);
char opt = char(cv::waitKey(0));
switch (opt) {
case 's':
demo(image);
break;
case 'q':
return EXIT_SUCCESS;
default:
break;
}
}
return EXIT_SUCCESS;
}
答案 3 :(得分:4)
我个人在TensorFlow中需要这个功能,感谢Aaron Snoswell,我可以实现这个功能。
def _rotate_and_crop(image, output_height, output_width, rotation_degree, do_crop):
"""Rotate the given image with the given rotation degree and crop for the black edges if necessary
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
rotation_degree: The degree of rotation on the image.
do_crop: Do cropping if it is True.
Returns:
A rotated image.
"""
# Rotate the given image with the given rotation degree
if rotation_degree != 0:
image = tf.contrib.image.rotate(image, math.radians(rotation_degree), interpolation='BILINEAR')
# Center crop to ommit black noise on the edges
if do_crop == True:
lrr_width, lrr_height = _largest_rotated_rect(output_height, output_width, math.radians(rotation_degree))
resized_image = tf.image.central_crop(image, float(lrr_height)/output_height)
image = tf.image.resize_images(resized_image, [output_height, output_width], method=tf.image.ResizeMethod.BILINEAR, align_corners=False)
return image
def _largest_rotated_rect(w, h, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
radians), computes the width and height of the largest possible
axis-aligned rectangle within the rotated rectangle.
Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
Converted to Python by Aaron Snoswell
Source: http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders
"""
quadrant = int(math.floor(angle / (math.pi / 2))) & 3
sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
alpha = (sign_alpha % math.pi + math.pi) % math.pi
bb_w = w * math.cos(alpha) + h * math.sin(alpha)
bb_h = w * math.sin(alpha) + h * math.cos(alpha)
gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)
delta = math.pi - alpha - gamma
length = h if (w < h) else w
d = length * math.cos(alpha)
a = d * math.sin(alpha) / math.sin(delta)
y = a * math.cos(gamma)
x = y * math.tan(gamma)
return (
bb_w - 2 * x,
bb_h - 2 * y
)
如果您需要在TensorFlow中进一步实现示例和可视化,可以使用this repository。 我希望这可以对其他人有所帮助。
答案 4 :(得分:3)
为简短起见,使用了出色的imutils库。
def rotated_rect(w, h, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
radians), computes the width and height of the largest possible
axis-aligned rectangle within the rotated rectangle.
Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
Converted to Python by Aaron Snoswell
"""
angle = math.radians(angle)
quadrant = int(math.floor(angle / (math.pi / 2))) & 3
sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
alpha = (sign_alpha % math.pi + math.pi) % math.pi
bb_w = w * math.cos(alpha) + h * math.sin(alpha)
bb_h = w * math.sin(alpha) + h * math.cos(alpha)
gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)
delta = math.pi - alpha - gamma
length = h if (w < h) else w
d = length * math.cos(alpha)
a = d * math.sin(alpha) / math.sin(delta)
y = a * math.cos(gamma)
x = y * math.tan(gamma)
return (bb_w - 2 * x, bb_h - 2 * y)
def crop(img, w, h):
x, y = int(img.shape[1] * .5), int(img.shape[0] * .5)
return img[
int(np.ceil(y - h * .5)) : int(np.floor(y + h * .5)),
int(np.ceil(x - w * .5)) : int(np.floor(x + h * .5))
]
def rotate(img, angle):
# rotate, crop and return original size
(h, w) = img.shape[:2]
img = imutils.rotate_bound(img, angle)
img = crop(img, *rotated_rect(w, h, angle))
img = cv2.resize(img,(w,h),interpolation=cv2.INTER_AREA)
return img
答案 5 :(得分:1)
对2013年5月27日Coprox给出的上述最有利解决方案的更正:当cosa = cosb infinity导致最后两行时。通过在前面的if选择器中添加“或cosa equal cosb”来解决。
另外:如果您不知道原始的非旋转nx和ny但只有旋转的帧(或图像),那么找到刚刚包含此框的框(我这样做是通过删除空白=单色边框)并首先运行对其大小进行反向编程以找到nx和ny。如果将图像旋转到一个太小的框架,使其沿侧面切割(成八角形),我首先找到完整收容框架的x和y延伸。 然而,这对于45度左右的角度也不起作用,其中结果变为正方形而不是保持非旋转的纵横比。对我来说,这个程序只适用于30度。
还是一个很棒的例程!它解决了我在天文图像对齐中的唠叨问题。
答案 6 :(得分:0)
有一种简单的方法可以解决这个问题,它使用另一个名为PIL的模块(只有在没有使用opencv的情况下才有用)
下面的代码完全相同,并以任何不会获得黑色像素的方式对任何图像进行编辑
from PIL import Image
def array_to_img(x, scale=True):
x = x.transpose(1, 2, 0)
if scale:
x += max(-np.min(x), 0)
x /= np.max(x)
x *= 255
if x.shape[2] == 3:
return Image.fromarray(x.astype("uint8"), "RGB")
else:
return Image.fromarray(x[:,:,0].astype("uint8"), "L")
def img_to_array(img):
x = np.asarray(img, dtype='float32')
if len(x.shape)==3:
# RGB: height, width, channel -> channel, height, width
x = x.transpose(2, 0, 1)
else:
# grayscale: height, width -> channel, height, width
x = x.reshape((1, x.shape[0], x.shape[1]))
return x
if __name__ == "__main__":
# Calls a function to convert image to array
image_array = img_to_array(image_name)
# Calls the function to rotate the image by given angle
rotated_image = array_to_img(random_rotation(image_array, rotation_angle))
# give the location where you want to store the image
rotated_image_name=<location_of_the_image_>+'roarted_image.png'
# Saves the image in the mentioned location
rotated_image.save(rotated_image_name)
答案 7 :(得分:0)
受到Coprox惊人工作的启发,我编写了一个与Coprox代码一起形成一个完整解决方案的功能(因此可以通过复制和粘贴来使用)。下面的rotate_max_area函数只返回一个没有黑色边界的旋转图像。
def rotate_bound(image, angle):
# CREDIT: https://www.pyimagesearch.com/2017/01/02/rotate-images-correctly-with-opencv-and-python/
(h, w) = image.shape[:2]
(cX, cY) = (w // 2, h // 2)
M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
return cv2.warpAffine(image, M, (nW, nH))
def rotate_max_area(image, angle):
""" image: cv2 image matrix object
angle: in degree
"""
wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0],
math.radians(angle))
rotated = rotate_bound(image, angle)
h, w, _ = rotated.shape
y1 = h//2 - int(hr/2)
y2 = y1 + int(hr)
x1 = w//2 - int(wr/2)
x2 = x1 + int(wr)
return rotated[y1:y2, x1:x2]
答案 8 :(得分:0)
快速解决方案
感谢coproc的出色解决方案。这是swift中的代码
// Given a rectangle of size.width x size.height that has been rotated by 'angle' (in
// radians), computes the width and height of the largest possible
// axis-aligned rectangle (maximal area) within the rotated rectangle.
func rotatedRectWithMaxArea(size: CGSize, angle: CGFloat) -> CGSize {
let w = size.width
let h = size.height
if(w <= 0 || h <= 0) {
return CGSize.zero
}
let widthIsLonger = w >= h
let (sideLong, sideShort) = widthIsLonger ? (w, h) : (w, h)
// since the solutions for angle, -angle and 180-angle are all the same,
// if suffices to look at the first quadrant and the absolute values of sin,cos:
let (sinA, cosA) = (sin(angle), cos(angle))
if(sideShort <= 2*sinA*cosA*sideLong || abs(sinA-cosA) < 1e-10) {
// half constrained case: two crop corners touch the longer side,
// the other two corners are on the mid-line parallel to the longer line
let x = 0.5*sideShort
let (wr, hr) = widthIsLonger ? (x/sinA, x/cosA) : (x/cosA, x/sinA)
return CGSize(width: wr, height: hr)
} else {
// fully constrained case: crop touches all 4 sides
let cos2A = cosA*cosA - sinA*sinA
let (wr, hr) = ((w*cosA - h*sinA)/cos2A, (h*cosA - w*sinA)/cos2A)
return CGSize(width: wr, height: hr)
}
}
答案 9 :(得分:0)
也许更简单的解决方案是:
def crop_image(image, angle):
h, w = image.shape
tan_a = abs(np.tan(angle * np.pi / 180))
b = int(tan_a / (1 - tan_a ** 2) * (h - w * tan_a))
d = int(tan_a / (1 - tan_a ** 2) * (w - h * tan_a))
return image[d:h - d, b:w - b]
与其像许多人一样计算旋转后的矩形的高度和宽度,还不如查找旋转图像时形成的黑色三角形的高度。
答案 10 :(得分:0)
按正确顺序旋转图像
import cv2
import pytesseract
import urllib
import numpy as np
import re
import imutils #added
import PIL
image = cv2.imread('my_pdf_madan_m/page_1.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.bitwise_not(gray)
rot_data = pytesseract.image_to_osd(image);
print("[OSD] "+rot_data)
rot = re.search('(?<=Rotate: )\d+',
rot_data).group(0)
angle = float(rot)
# rotate the image to deskew it
rotated = imutils.rotate_bound(image, angle) #added
# TODO: Rotated image can be saved here
print(pytesseract.image_to_osd(rotated));
# Run tesseract OCR on image
text = pytesseract.image_to_string(rotated,
lang='eng', config="--psm 6")
print(text)