Lps中的lpsolve包

时间:2013-05-20 14:34:18

标签: r linear-programming lpsolve

我正在使用lpsolve包进行线性编程,但已阅读其教程中仅解决非负变量。

这是我的代码:

library(lpSolve) #linear programming solver
c = c(30, 18, 20, 23, 24, 26) 
a = scan(text="66 89 82 14 35 72")
b = 50
con.qual.s1=scan(text="64 98 17 55 27 80")
con.qual.s2=scan(text="16 59 88 89 60 47")
qual.cons=c(53,82)

n=6 #activities
m=3 #resources
f.rhs = c(b,qual.cons)
f.con <- matrix (rbind(a,con.qual.s1,con.qual.s2,diag.p),nrow=m+nrow(diag.p))
f.obj.d <- c(50,53,82)
diag.d=diag(x = 1, m, m) #non-negativity
f.con.d <- matrix (rbind(t(f.con[1:m,]),diag.d),nrow=n+nrow(diag.d))
f.dir.d <- c(rep("<=",7),rep(">=",2))
f.rhs.d <- c(c,rep(0,m))
of.d=lp ("max", f.obj.d, f.con.d, f.dir.d, f.rhs.d,compute.sens=TRUE)

请注意,忽略约束号7为非正数的事实。

编辑:我添加了lpSolveAPI包的新代码。为了检查是否有效,我为原始问题和双重问题准备了不同的代码。

数据:

c = c(30, 18, 20, 23, 24, 26) 
a = scan(text="66 89 82 14 35 72")
b = 50
con.qual.s1=scan(text="64 98 17 55 27 80")
con.qual.s2=scan(text="16 59 88 89 60 47")
qual.cons=c(53,82)

n=6 #activities
m=3 #resources

PRIMAL PROBLEM :(这里我们没有任何问题,因为所有变量都必须是非负的)

library(lpSolveAPI)
lprec.p <- make.lp(0, n)
f.con <- matrix (rbind(a,con.qual.s1,con.qual.s2),nrow=m)

set.objfn(lprec.p, c)
add.constraint(lprec.p, f.con[1,], "<=", f.rhs[1])
for (i in 2:m) {
add.constraint(lprec.p, f.con[i,], ">=", f.rhs[i])
}

ColNames <- c("x1", "x2", "x3", "x4","x5","x6")
RowNames <- c("pi1", "pi2", "pi3")
dimnames(lprec.p) <- list(RowNames, ColNames)
lprec.p
solve(lprec.p)
get.objective(lprec.p)

DUAL PROBLEM :(这里我们需要第一个变量是非正数所以使用set.bounds

library(lpSolveAPI)
lprec.d <- make.lp(0, m)
lp.control(lprec.d,sense="max")
f.con.d=matrix (cbind(a,con.qual.s1,con.qual.s2),ncol=m)

set.objfn(lprec.d, f.rhs)
for (i in 1:n) {
add.constraint(lprec.d, f.con.d[i,], "<=", c[i])
}
set.bounds(lprec.d, lower = c(-Inf), upper = c(0),columns = c(1))
RowNames <- c("x1", "x2", "x3", "x4","x5","x6")
ColNames <- c("pi1", "pi2", "pi3")
dimnames(lprec.d) <- list(RowNames, ColNames)
lprec.d
solve(lprec.d)
get.objective(lprec.d)

1 个答案:

答案 0 :(得分:6)

如果您使用lpsolve R page中建议的 lpSolveAPI 库,则应用set.bounds / set_bounds方法分配否定值应该相当简单你的变量的界限。

例如,如果您有三个变量x1x2x3,其中包含以下范围:

x1 >= 0
x2 <= 0
-5 <= x3 <= 10

使用 R 中的 lpSolveAPI ,假设您的问题标记为lprec,您应该可以将其指定为:

set.bounds(lprec, lower = c(0, -Inf, -5), upper = c(Inf, 0, 10), columns = c(1, 2, 3))