我正在尝试为多元多项式编写一个编译时类(即像P(X,Y,Z)= X ^ 2 + XYZ + YZ,这里不要太担心数学):
template<int DIM, int DEGREE> class Polynomial {
public:
constexpr Polynomial(std::array<double,nbOfCoeffs(DIM,DEGREE)> arr): coeffs(arr) {}
constexpr double eval(std::array<double,DIM> x);
constexpr operator+,-,*,/ ...
private:
std::array<double,nbOfCoeffs(DIM,DEGREE)> coeffs; //don't worry about "nbOfCoeffs" : it is constexpr and computes at compile time the right number of coefficients.
}
int main () {
Polynomial<2,2> P({{1.,1.,1.,1.,1.,1.}}); // P(X,Y) = X^2+XY+Y^2+X+Y+1
double x = P.eval(1.);
auto P2 = P*P;
}
到目前为止,实现这一点并没有什么大不了的问题。但请注意,我的ctor可能有点麻烦:如何初始化三次三次多项式P(X,Y,Z)= XYZ?我会有像
这样的东西多项式&LT; 3,3 GT; P({{0,0,0,0,0,1,0,0,0,0}});
根据我存储它的位置,唯一的非零单项式的位置。如果我能写下来会很好:
Polynomial<3,3> P("XYZ");
Polynomial<4,3> P("X1X2X3 + X4^2"); //more general
这个想法是创建某种小DST来处理多项式的字符串表示。
但是,如果我这样做,一旦解析了字符串,我不知道如何为我的存储数组的元素赋值:所有必须在ctor的主体保持为空的情况下完成(因为我希望它是constexpr)。你怎么看呢 ?可能吗 ?我应该将我的数组更改为某种重复结构(因为在这种情况下,我认为它会变得非常非常复杂)
答案 0 :(得分:3)
如何实施Luc Danton方法的示例:
#include <cstddef>
#include <iostream>
namespace polynomials
{
// it's possible to store the exponent as data member instead
template < std::size_t t_id, std::size_t t_exponent = 1 >
struct monomial
{
static constexpr std::size_t id = t_id;
static constexpr std::size_t exponent = t_exponent;
// it's not possible to store the coefficient
// as non-type template parameter (floating-point..)
double coefficient;
explicit constexpr monomial(double p_coefficient = 1.0)
: coefficient{ p_coefficient }
{}
void print() const
{
std::cout << coefficient << "X" << t_id << "^" << t_exponent;
}
};
// create the monomial objects (like std::placeholders::_1)
constexpr monomial<0> X;
constexpr monomial<1> Y;
constexpr monomial<2> Z;
constexpr monomial<4> X0;
constexpr monomial<5> X1;
// ... can use macros to produce a lot of them..
// multiply an arithmetic type (double, int, ..) with a monomial
template < typename T_Arithmetic,
std::size_t t_id, std::size_t t_exponent0 >
constexpr auto operator*(T_Arithmetic c, monomial < t_id, t_exponent0 > m0)
-> monomial < t_id, t_exponent0 >
{
return monomial < t_id, t_exponent0 >{c * m0.coefficient};
}
// the other way 'round
template < typename T_Arithmetic,
std::size_t t_id, std::size_t t_exponent0 >
constexpr auto operator*(monomial < t_id, t_exponent0 > m0, T_Arithmetic c)
-> monomial < t_id, t_exponent0 >
{
return c * m0;
}
// multiply two monomials with the same id
template < std::size_t t_id,
std::size_t t_exponent0, std::size_t t_exponent1 >
constexpr auto operator*(monomial < t_id, t_exponent0 > m0,
monomial < t_id, t_exponent1 > m1)
-> monomial < t_id, t_exponent0 + t_exponent1 >
{
return monomial<t_id, t_exponent0 + t_exponent1>
{m0.coefficient * m1.coefficient};
}
// storage type for multiple different monomials
template < typename... T_Monomials >
struct polynomial
{
void print() const
{}
};
template < typename T_Monomial, typename... TT_Monomials >
struct polynomial < T_Monomial, TT_Monomials... >
: public polynomial < TT_Monomials... >
{
using base = polynomial < TT_Monomials... >;
T_Monomial m;
constexpr polynomial(T_Monomial p, TT_Monomials... pp)
: base(pp...)
, m{p}
{}
void print() const
{
m.print();
std::cout << "*";
base::print();
}
};
// multiply two monomials to get a polynomial
template < std::size_t t_id0, std::size_t t_id1,
std::size_t t_exponent0, std::size_t t_exponent1 >
constexpr auto operator*( monomial < t_id0, t_exponent0 > m0,
monomial < t_id1, t_exponent1 > m1)
-> polynomial < monomial<t_id0, t_exponent0>,
monomial<t_id1, t_exponent1> >
{
return {m0, m1};
}
// still to do (and more complicated):
// - multiply two polynomials
// - multiply a polynomial and a monomial
// - addition, subtraction, division (?) etc.
}
用法示例:
int main()
{
using namespace polynomials;
auto p0 = 1.25*X*X;
p0.print();
std::cout << std::endl;
auto p1 = p0 * 5*Y;
p1.print();
std::cout << std::endl;
}
答案 1 :(得分:2)
实现相同语法的完全不同的方法。使用成员数组极大地简化了库的开发:
用法示例:
int main()
{
constexpr auto p0 = 1.25*X;
std::cout << "p0: " << p0 << std::endl;
constexpr auto p1 = p0*p0;
std::cout << "p1: " << p1 << std::endl;
constexpr auto p2 = Y*Z; // can already multiply different monomials!!
std::cout << "p2: " << p2 << std::endl;
constexpr auto p3 = p1*p2;
std::cout << "p2: " << p2 << std::endl;
}
从助手类型开始:
#include <type_traits>
#include <iostream>
// an array type similar to `std::array`
// but with `constexpr` operators
template < typename T, std::size_t t_dim >
struct c_array
{
T arr[t_dim];
template < typename... TT >
constexpr c_array(TT... pp)
: arr{pp...}
{}
constexpr T operator[](std::size_t i)
{ return arr[i]; }
constexpr std::size_t size()
{ return t_dim; }
};
单项式和多项式类型:
// the monomial type, stores a coefficient and an array of exponent
// the array index identifies a variable (X -> index 0, Y -> index 1, ..)
template < std::size_t t_numberOfVariables >
struct monomial
{
using ExponentT = int;
using ExponentArr = c_array < ExponentT, t_numberOfVariables >;
double coefficient;
ExponentArr exponents;
// used to simplify brace-init syntax
constexpr monomial(double c, ExponentArr e)
: coefficient{c}
, exponents(e)
{}
};
// the polynomial type, stores a sum of monomials as a list (c_array)
template < std::size_t t_numberOfVariables,
std::size_t t_numOfMonomials >
struct polynomial
{
using MonT = monomial < t_numberOfVariables >;
using MonArr = c_array < MonT, t_numOfMonomials >;
MonArr monomials;
constexpr polynomial(MonArr p)
: monomials(p)
{}
};
// output / print a polynomial
template < typename T_Char, typename T_CharTraits,
std::size_t t_nV, std::size_t t_nP >
std::basic_ostream<T_Char, T_CharTraits>&
operator <<( std::basic_ostream<T_Char, T_CharTraits>& o,
polynomial<t_nV, t_nP> const& p )
{
for(std::size_t iM = 0; iM < p.monomials.size(); ++iM)
{
auto const& m = p.monomials[iM];
std::cout << m.coefficient;
for(std::size_t iExp = 0; iExp < m.exponents.size(); ++iExp)
{
std::cout << " * X" << iExp << "^" << m.exponents[iExp];
}
if( iM+1 < p.monomials.size() )
{
std::cout << " + ";
}
}
return o;
}
几位助手:
// helper; construct a sequence of non-type template arguments
template < std::size_t... tt_i >
struct seq
{};
template < std::size_t t_n, std::size_t... tt_i >
struct gen_seq
: gen_seq < t_n-1, t_n-1, tt_i...>
{};
template < std::size_t... tt_i >
struct gen_seq < 0, tt_i... >
: seq < tt_i... >
{};
// helper; compile-time max
template < typename T0, typename T1 >
constexpr auto c_max(T0 const& p0, T1 const& p1)
-> decltype( p0 > p1 ? p0 : p1 )
{
return p0 > p1 ? p0 : p1;
}
template < typename T, typename... TT >
constexpr auto c_max(T const& p, TT const&... pp)
-> decltype( p > c_max(pp...) ? p : c_max(pp...) )
{
return p > c_max(pp...) ? p : c_max(pp...);
}
创建命名空间范围对象:
// helper; construct a monomial as type `polynomial`
template < std::size_t t_numberOfVariables >
constexpr polynomial<t_numberOfVariables, 1>
create_polynomial(monomial<t_numberOfVariables> m)
{
return polynomial<t_numberOfVariables, 1>{ m };
}
template < std::size_t... tt_i >
constexpr monomial<sizeof...(tt_i) + 1>
create_monomial(double coefficient, int exponent, seq<tt_i...>)
{
return monomial<sizeof...(tt_i) + 1>{ coefficient,
{(int)(0*tt_i)..., exponent} };
}
template < std::size_t t_variableID >
constexpr polynomial<t_variableID, 1>
create_polynomial(double coefficient, int exponent)
{
return create_polynomial<t_variableID>(
create_monomial(coefficient, exponent, gen_seq<t_variableID-1>{}) );
}
// the namespace-scope objects
constexpr auto X = create_monomial<1>(1.0, 1);
constexpr auto Y = create_monomial<2>(1.0, 1);
constexpr auto Z = create_monomial<3>(1.0, 1);
constexpr auto X0 = create_monomial<4>(1.0, 1);
// ...
关于两个多项式的算术运算符的助手:
// helper; expands a monomial (-> more space in array)
// without changing its contents
template < std::size_t t_targetDim, std::size_t t_currDim,
std::size_t... tt_curr, std::size_t... tt_exp >
constexpr monomial < t_targetDim >
expand( monomial<t_currDim> m, seq<tt_curr...>, seq<tt_exp...> )
{
return {m.coefficient, {m.exponents[tt_curr]..., (int)(0*tt_exp)...}};
}
template < std::size_t t_targetDim, std::size_t t_currDim >
constexpr monomial < t_targetDim >
expand( monomial<t_currDim> m )
{
using exp = std::integral_constant < std::size_t,
(t_targetDim > t_currDim ? t_targetDim-t_currDim : 0) >;
return expand<t_targetDim>( m, gen_seq<t_currDim>{}, gen_seq<exp{}>{} );
}
乘法运算符的定义:
// helper for multiplication of polynomials with same array size
template < std::size_t t_dim, std::size_t... tt_i >
constexpr polynomial<t_dim>
multiply(polynomial<t_dim> p0, polynomial<t_dim> p1, seq<tt_i...>)
{
return { p0.m[tt_i]*p1.m[tt_i]... };
}
// polynomial*polynomial, with different array size
template < std::size_t t_dim0, std::size_t t_dim1 >
constexpr polynomial < c_max(t_dim0, t_dim1) >
operator*( polynomial<t_dim0> p0, polynomial<t_dim1> p1 )
{
using ret_dim = std::integral_constant < std::size_t,
c_max(t_dim0, t_dim1) >;
return multiply( expand<ret_dim{}>(p0), expand<ret_dim{}>(p1),
gen_seq<ret_dim{}>{} );
}
// helper for multiplication of monomials with same array size
template < std::size_t t_dim, std::size_t... tt_i >
constexpr monomial<t_dim>
multiply(monomial<t_dim> m0, monomial<t_dim> m1, seq<tt_i...>)
{
return { m0.coefficient*m1.coefficient,
{m0.exponents[tt_i]+m1.exponents[tt_i]...} };
}
// monomial*monomial, with (possibly) different array size
template < std::size_t t_dim0, std::size_t t_dim1 >
constexpr monomial < c_max(t_dim0, t_dim1) >
operator*( monomial<t_dim0> m0, monomial<t_dim1> m1 )
{
using ret_dim = std::integral_constant < std::size_t,
c_max(t_dim0, t_dim1) >;
return multiply( expand<ret_dim{}>(m0), expand<ret_dim{}>(m1),
gen_seq<ret_dim{}>{} );
}
// coefficient*monomial
template < typename T_Arithmetic, std::size_t t_dim >
constexpr monomial<t_dim>
operator*(T_Arithmetic c, monomial<t_dim> m)
{
return { c*m.coefficient, m.exponents };
}
// monomial*coefficient
template < typename T_Arithmetic, std::size_t t_dim >
constexpr monomial<t_dim>
operator*(monomial<t_dim> m, T_Arithmetic c)
{
return { m.coefficient*c, m.exponents };
}
// helper for multiplication of coefficient*polynomial
template < typename T_Arithmetic,
std::size_t t_nM, std::size_t t_nV,
std::size_t... tt_i >
constexpr polynomial<t_nM, t_nV>
multiply(T_Arithmetic c, polynomial<t_nM, t_nVs> p, seq<tt_i...>)
{
return {{c*p.monomials[tt_i]...}};
}
// helper for multiplication of polynomial*coefficient
template < typename T_Arithmetic,
std::size_t t_nM, std::size_t t_nV,
std::size_t... tt_i >
constexpr polynomial<t_nM, t_nV>
multiply(polynomial<t_nM, t_nV> p,
T_Arithmetic c, seq<tt_i...>)
{
return {{p.monomials[tt_i]*c...}};
}
// coefficient*polynomial
template < typename T_Arithmetic,
std::size_t t_nM, std::size_t t_nV >
constexpr polynomial<t_nM, t_nV>
operator*(T_Arithmetic c, polynomial<t_nM, t_nV> p)
{
return multiply(c, p, gen_seq<t_nM>{});
}
// polynomial*coefficient
template < typename T_Arithmetic,
std::size_t t_nM, std::size_t t_nV >
constexpr polynomial<t_nM, t_nV>
operator*(polynomial<t_nM, t_nV> p, T_Arithmetic c)
{
return multiply(p, c, gen_seq<t_nM>{});
}
// polynomial<N0, 1>*polynomial<N1, 1> (monomials)
template < std::size_t t_nV0,
std::size_t t_nV1 >
constexpr polynomial< c_max(t_nV0, t_nV1), 1 >
operator*(polynomial<t_nV0, 1> p0, polynomial<t_nV1, 1> p1)
{
return {{ p0.monomials[0]*p1.monomials[0] }};
}