假设我有两列数据。第一个包含诸如“First”,“Second”,“Third”等类别。第二个包含代表我看到“First”次数的数字。
例如:
Category Frequency
First 10
First 15
First 5
Second 2
Third 14
Third 20
Second 3
我想按类别对数据进行排序,并对频率求和:
Category Frequency
First 30
Second 5
Third 34
我如何在R?
中这样做答案 0 :(得分:328)
使用aggregate
:
aggregate(x$Frequency, by=list(Category=x$Category), FUN=sum)
Category x
1 First 30
2 Second 5
3 Third 34
在上面的示例中,可以在list
中指定多个维度。可以通过cbind
合并相同数据类型的多个聚合指标:
aggregate(cbind(x$Frequency, x$Metric2, x$Metric3) ...
(嵌入@thelatemail评论),aggregate
也有一个公式界面
aggregate(Frequency ~ Category, x, sum)
或者,如果要聚合多个列,可以使用.
表示法(也适用于一列)
aggregate(. ~ Category, x, sum)
或tapply
:
tapply(x$Frequency, x$Category, FUN=sum)
First Second Third
30 5 34
使用此数据:
x <- data.frame(Category=factor(c("First", "First", "First", "Second",
"Third", "Third", "Second")),
Frequency=c(10,15,5,2,14,20,3))
答案 1 :(得分:171)
最近,您还可以使用 dplyr 包来实现此目的:
library(dplyr)
x %>%
group_by(Category) %>%
summarise(Frequency = sum(Frequency))
#Source: local data frame [3 x 2]
#
# Category Frequency
#1 First 30
#2 Second 5
#3 Third 34
或者,对于多个摘要列(也适用于一列):
x %>%
group_by(Category) %>%
summarise_each(funs(sum))
更新dplyr&gt; = 0.5: summarise_each
已替换为dplyr中的summarise_all
,summarise_at
和summarise_if
系列函数。
或者,如果您有多列要分组,,您可以在group_by
中用逗号分隔所有这些列:
mtcars %>%
group_by(cyl, gear) %>% # multiple group columns
summarise(max_hp = max(hp), mean_mpg = mean(mpg)) # multiple summary columns
有关详细信息,包括%>%
运算符,请参阅introduction to dplyr。
答案 2 :(得分:61)
rcs提供的答案很简单。但是,如果您正在处理更大的数据集并需要提高性能,则可以采用更快的替代方法:
library(data.table)
data = data.table(Category=c("First","First","First","Second","Third", "Third", "Second"),
Frequency=c(10,15,5,2,14,20,3))
data[, sum(Frequency), by = Category]
# Category V1
# 1: First 30
# 2: Second 5
# 3: Third 34
system.time(data[, sum(Frequency), by = Category] )
# user system elapsed
# 0.008 0.001 0.009
让我们使用data.frame和上面的内容来比较它:
data = data.frame(Category=c("First","First","First","Second","Third", "Third", "Second"),
Frequency=c(10,15,5,2,14,20,3))
system.time(aggregate(data$Frequency, by=list(Category=data$Category), FUN=sum))
# user system elapsed
# 0.008 0.000 0.015
如果你想保留这个列,这就是语法:
data[,list(Frequency=sum(Frequency)),by=Category]
# Category Frequency
# 1: First 30
# 2: Second 5
# 3: Third 34
对于较大的数据集,差异将变得更加明显,如下面的代码所示:
data = data.table(Category=rep(c("First", "Second", "Third"), 100000),
Frequency=rnorm(100000))
system.time( data[,sum(Frequency),by=Category] )
# user system elapsed
# 0.055 0.004 0.059
data = data.frame(Category=rep(c("First", "Second", "Third"), 100000),
Frequency=rnorm(100000))
system.time( aggregate(data$Frequency, by=list(Category=data$Category), FUN=sum) )
# user system elapsed
# 0.287 0.010 0.296
对于多个聚合,您可以合并lapply
和.SD
,如下所示
data[, lapply(.SD, sum), by = Category]
# Category Frequency
# 1: First 30
# 2: Second 5
# 3: Third 34
答案 3 :(得分:35)
您也可以使用 by()功能:
x2 <- by(x$Frequency, x$Category, sum)
do.call(rbind,as.list(x2))
那些其他包(plyr,reshape)具有返回data.frame的好处,但值得熟悉by(),因为它是一个基本函数。
答案 4 :(得分:24)
library(plyr)
ddply(tbl, .(Category), summarise, sum = sum(Frequency))
答案 5 :(得分:16)
如果x
是包含您数据的数据框,那么以下内容将符合您的要求:
require(reshape)
recast(x, Category ~ ., fun.aggregate=sum)
答案 6 :(得分:16)
只需添加第三个选项:
require(doBy)
summaryBy(Frequency~Category, data=yourdataframe, FUN=sum)
编辑:这是一个非常古老的答案。现在我建议使用group_by
中的summarise
和dplyr
,就像@docendo answer一样。
答案 7 :(得分:16)
虽然我最近成为大多数这类操作的转换为dplyr
,但对于某些事情,sqldf
包仍然非常好(并且恕我直言更具可读性)。
以下是使用sqldf
x <- data.frame(Category=factor(c("First", "First", "First", "Second",
"Third", "Third", "Second")),
Frequency=c(10,15,5,2,14,20,3))
sqldf("select
Category
,sum(Frequency) as Frequency
from x
group by
Category")
## Category Frequency
## 1 First 30
## 2 Second 5
## 3 Third 34
答案 8 :(得分:5)
另一种解决方案可以按矩阵或数据帧的形式按组返回总和,且又短又快:
rowsum(x$Frequency, x$Category)
答案 9 :(得分:4)
最近添加的dplyr::tally()
现在比以往任何时候都更容易:
tally(x, Category)
Category n
First 30
Second 5
Third 34
答案 10 :(得分:4)
当您需要在不同的列上应用不同的聚合函数(并且您必须/想要坚持以R为基础)时,我发现ave
非常有用(有效):
例如
给出此输入:
DF <-
data.frame(Categ1=factor(c('A','A','B','B','A','B','A')),
Categ2=factor(c('X','Y','X','X','X','Y','Y')),
Samples=c(1,2,4,3,5,6,7),
Freq=c(10,30,45,55,80,65,50))
> DF
Categ1 Categ2 Samples Freq
1 A X 1 10
2 A Y 2 30
3 B X 4 45
4 B X 3 55
5 A X 5 80
6 B Y 6 65
7 A Y 7 50
我们要按Categ1
和Categ2
进行分组,并计算Samples
和Freq
的平均值。
这是使用ave
的可能解决方案:
# create a copy of DF (only the grouping columns)
DF2 <- DF[,c('Categ1','Categ2')]
# add sum of Samples by Categ1,Categ2 to DF2
# (ave repeats the sum of the group for each row in the same group)
DF2$GroupTotSamples <- ave(DF$Samples,DF2,FUN=sum)
# add mean of Freq by Categ1,Categ2 to DF2
# (ave repeats the mean of the group for each row in the same group)
DF2$GroupAvgFreq <- ave(DF$Freq,DF2,FUN=mean)
# remove the duplicates (keep only one row for each group)
DF2 <- DF2[!duplicated(DF2),]
结果:
> DF2
Categ1 Categ2 GroupTotSamples GroupAvgFreq
1 A X 6 45
2 A Y 9 40
3 B X 7 50
6 B Y 6 65
答案 11 :(得分:4)
自dplyr 1.0.0
起,就可以使用across()
函数:
df %>%
group_by(Category) %>%
summarise(across(Frequency, sum))
Category Frequency
<chr> <int>
1 First 30
2 Second 5
3 Third 34
如果对多个变量感兴趣:
df %>%
group_by(Category) %>%
summarise(across(c(Frequency, Frequency2), sum))
Category Frequency Frequency2
<chr> <int> <int>
1 First 30 55
2 Second 5 29
3 Third 34 190
以及使用选择助手选择变量:
df %>%
group_by(Category) %>%
summarise(across(starts_with("Freq"), sum))
Category Frequency Frequency2 Frequency3
<chr> <int> <int> <dbl>
1 First 30 55 110
2 Second 5 29 58
3 Third 34 190 380
样本数据:
df <- read.table(text = "Category Frequency Frequency2 Frequency3
1 First 10 10 20
2 First 15 30 60
3 First 5 15 30
4 Second 2 8 16
5 Third 14 70 140
6 Third 20 120 240
7 Second 3 21 42",
header = TRUE,
stringsAsFactors = FALSE)
答案 12 :(得分:3)
您可以使用软件包 Rfast 中的功能group.sum
。
Category <- Rfast::as_integer(Category,result.sort=FALSE) # convert character to numeric. R's as.numeric produce NAs.
result <- Rfast::group.sum(Frequency,Category)
names(result) <- Rfast::Sort(unique(Category)
# 30 5 34
Rfast 具有许多组功能,group.sum
是其中之一。
答案 13 :(得分:2)
使用cast
代替recast
(注意'Frequency'
现在是'value'
)
df <- data.frame(Category = c("First","First","First","Second","Third","Third","Second")
, value = c(10,15,5,2,14,20,3))
install.packages("reshape")
result<-cast(df, Category ~ . ,fun.aggregate=sum)
得到:
Category (all)
First 30
Second 5
Third 34
答案 14 :(得分:0)
library(tidyverse)
x <- data.frame(Category= c('First', 'First', 'First', 'Second', 'Third', 'Third', 'Second'),
Frequency = c(10, 15, 5, 2, 14, 20, 3))
count(x, Category, wt = Frequency)