我有一个单元格:
BED4{6,4,4}=[];
eg. BED4{1}{1}{1}
ans =
[8x1 double] [8x1 double] [8x2 double] [8x1 double]
我想计算mean
,好像它是沿着红色箭头的for循环:
到目前为止,我不得不这样做......
figure('color',[1 1 1])
titles={'Direct care','Housekeeping','Mealtimes','Medication rounds','Miscellaneous care','Personal care'};
for care=1:6
subplot(3,2,care)
clear a m e pci1 pci2 gn
for position=1:4
for patient=1:4
a(:,:,position,patient,care)=cell2mat(BED4{care}{position}{patient});
end
end
m=mean(mean(a(:,1,:,:,care),4),3);
e=mean(mean(a(:,2,:,:,care),4),3);
pci1=mean(mean(a(:,3,:,:,care),4),3);
pci2=mean(mean(a(:,4,:,:,care),4),3);
gn=a(:,5,1,1,care);
if care==1
b={m,e,pci1,pci2,gn}; %store for posterity
end
h=errorbar(gn,m,e,'sr');
set(h,'linestyle','--','LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','white',...
'MarkerSize',5);
ylabel('Relative Risk ');
xlabel('Patient contact count');
title(titles{ii})
set(gca,'xtick',0:2:8)
axis([-2 8 0 1])
end
给出:
答案 0 :(得分:1)
如果您重塑数据以隔离第一维(care
),则会更容易:
C = reshape(BED4, size(BED4, 1), 1);
每行对应不同的care
值。让我们将每行中的单元格内容堆叠为3-D矩阵,并获得所需的平均值:
res = cell(size(C, 1), 1); %// Preallocate memory
for care = 1:size(C, 1)
X = vertcat(C{care, :}); %// Obtain content from row
func = @(k)mean(cat(3, X{:, k}), 3); %// Stacks content and obtains mean
res{care} = arrayfun(func, 1:size(X, 2), 'UniformOutput', 0);
end
生成的单元格数组res
应包含所有所需的平均值。