我有一种简单的语言,我正在尝试编写一个编译器(是的,它是家庭作业)来编译一个简单的语言,我将在必要时描述java vm代码。
它目前工作得很好我刚刚用逻辑AND和OR来碰撞。
每个工作在单个if / while条件下都很好,但是如果我尝试将它们链接起来就会出问题,如果我错了就纠正我,但我相信AND有优先权,但我想知道是否有合理的排列方式他们?我想我正在试图问,java vm代码输出只是一个接一个地有比较和跳转语句(这似乎是错误的)。我意识到它非常抽象,所以也许我所追求的是如何构造链式AND和OR的伪代码/算法。
编辑:目前只将AND和OR的任意组合视为AND。比较因子/术语/表达式连接(与booleanfactor等相比)我认为AND具有优先权?只是一个想法。
如果对此知之甚少,请道歉:/
所以我想生病包括相关信息。
编译器
import re
import sys
# Restrictions:
# Integer constants must be short.
# Stack size must not exceed 1024.
# Integer is the only type.
# Logical operators cannot be nested.
class Scanner:
'''The interface comprises the methods lookahead and consume.
Other methods should not be called from outside of this class.'''
def __init__(self, input_file):
'''Reads the whole input_file to input_string.'''
# source code of the program to be compiled
self.input_string = input_file.read()
# index where the unprocessed part of input_string starts
self.current_char_index = 0
# a pair (most recently read token, matched substring of input_string)
self.current_token = self.get_token()
def skip_white_space(self):
'''Consumes all characters in input_string up to the next
non-white-space character.'''
if (self.current_char_index >= len(self.input_string) - 1):
# bad fix for it over-running the end of the file
return
while self.input_string[self.current_char_index].isspace():
self.current_char_index += 1
return
def get_token(self):
'''Returns the next token and the part of input_string it matched.
Returns None if there is no next token.
The characters up to the end of the token are consumed.'''
self.skip_white_space()
# find the longest prefix of input_string that matches a token
token, longest = None, ''
for (t, r) in Token.token_regexp:
match = re.match(r, self.input_string[self.current_char_index:])
if match and match.end() > len(longest):
token, longest = t, match.group()
# consume the token by moving the index to the end of the matched part
self.current_char_index += len(longest)
return (token, longest)
def lookahead(self):
'''Returns the next token without consuming it.
Returns None if there is no next token.'''
return self.current_token[0]
def consume(self, *tokens):
'''Returns the next token and consumes it, if it is in tokens.
Raises an exception otherwise.
If the token is a number or an identifier, its value is returned.'''
if self.current_token[0] not in tokens:
print('Token ' + self.current_token[0] + ' isn\'t in the tokens: ')
for token in tokens:
print(token)
raise Exception('Token is not in tokens this shouldn\'t happen much')
if self.current_token[0] == 'ID':
symbol_table.location(self.current_token[1])
value = self.current_token[1]
elif (self.current_token[0] == 'NUM'):
value = self.current_token[1]
else:
value = self.current_token[0]
self.current_token = self.get_token()
return value
class Token:
DO = 'DO';
ELSE = 'ELSE';
END = 'END';
IF = 'IF';
THEN = 'THEN';
WHILE = 'WHILE';
SEM = 'SEM';
BEC = 'BEC';
LESS = 'LESS';
EQ = 'EQ';
GRTR = 'GRTR';
LEQ = 'LEQ';
NEQ = 'NEQ';
GEQ = 'GEQ';
ADD = 'ADD';
SUB = 'SUB';
MUL = 'MUL';
DIV = 'DIV';
LPAR = 'LPAR';
RPAR = 'RPAR';
NUM = 'NUM';
ID = 'ID';
READ = 'READ';
WRITE = 'WRITE';
OR = 'OR';
AND = 'AND';
NOT = 'NOT';
# The following list gives the regular expression to match a token.
# The order in the list matters for mimicking Flex behaviour.
# Longer matches are preferred over shorter ones.
# For same-length matches, the first in the list is preferred.
token_regexp = [
(DO, 'do'),
(ELSE, 'else'),
(END, 'end'),
(IF, 'if'),
(THEN, 'then'),
(WHILE, 'while'),
(READ, 'read'),
(WRITE, 'write'),
(OR, 'or'),
(AND, 'and'),
(NOT, 'not'),
(SEM, ';'),
(BEC, ':='),
(LESS, '<'),
(EQ, '='),
(NEQ, '!='),
(GRTR, '>'),
(LEQ, '<='),
(GEQ, '>='),
(ADD, '[+]'), # + is special in regular expressions
(SUB, '-'),
(MUL, '[*]'),
(DIV, '/'),
(LPAR, '[(]'), # ( is special in regular expressions
(RPAR, '[)]'), # ) is special in regular expressions
(ID, '[a-z]+'),
(NUM, '[0-9]+'),
]
class Symbol_Table:
'''A symbol table maps identifiers to locations.'''
def __init__(self):
self.symbol_table = {}
def size(self):
'''Returns the number of entries in the symbol table.'''
return len(self.symbol_table)
def location(self, identifier):
'''Returns the location of an identifier. If the identifier is not in
the symbol table, it is entered with a new location. Locations are
numbered sequentially starting with 0.'''
if identifier in self.symbol_table:
return self.symbol_table[identifier]
index = len(self.symbol_table)
self.symbol_table[identifier] = index
return index
class Label:
def __init__(self):
self.current_label = 0
def next(self):
'''Returns a new, unique label.'''
self.current_label += 1
return 'l' + str(self.current_label)
def indent(s, level):
return ' '*level + s + '\n'
# Each of the following classes is a kind of node in the abstract syntax tree.
# indented(level) returns a string that shows the tree levels by indentation.
# code() returns a string with JVM bytecode implementing the tree fragment.
# true_code/false_code(label) jumps to label if the condition is/is not true.
# Execution of the generated code leaves the value of expressions on the stack.
class Program_AST:
def __init__(self, program):
self.program = program
def __repr__(self):
return repr(self.program)
def indented(self, level):
return self.program.indented(level)
def code(self):
program = self.program.code()
local = symbol_table.size()
java_scanner = symbol_table.location('Java Scanner')
return '.class public Program\n' + \
'.super java/lang/Object\n' + \
'.method public <init>()V\n' + \
'aload_0\n' + \
'invokenonvirtual java/lang/Object/<init>()V\n' + \
'return\n' + \
'.end method\n' + \
'.method public static main([Ljava/lang/String;)V\n' + \
'.limit locals ' + str(local) + '\n' + \
'.limit stack 1024\n' + \
'new java/util/Scanner\n' + \
'dup\n' + \
'getstatic java/lang/System.in Ljava/io/InputStream;\n' + \
'invokespecial java/util/Scanner.<init>(Ljava/io/InputStream;)V\n' + \
'astore ' + str(java_scanner) + '\n' + \
program + \
'return\n' + \
'.end method\n'
class Statements_AST:
def __init__(self, statements):
self.statements = statements
def __repr__(self):
result = repr(self.statements[0])
for st in self.statements[1:]:
result += '; ' + repr(st)
return result
def indented(self, level):
result = indent('Statement(s)', level)
for st in self.statements:
result += st.indented(level+1)
return result
def code(self):
result = ''
for st in self.statements:
result += st.code()
return result
class If_AST:
def __init__(self, boolean_expression, then):
self.boolean_expression = boolean_expression
self.then = then
def __repr__(self):
return 'if ' + repr(self.boolean_expression) + ' then ' + \
repr(self.then) + ' end'
def indented(self, level):
return indent('If-Then', level) + \
self.boolean_expression.indented(level+1) + \
self.then.indented(level+1)
def code(self):
l1 = label_generator.next()
return self.boolean_expression.code(l1) + \
self.then.code() + \
l1 + ':\n'
class If_Else_AST:
def __init__(self, boolean_expression, then, _else):
self.boolean_expression = boolean_expression;
self.then = then;
self._else = _else;
def __repr__(self):
return 'if ' + repr(self.boolean_expression) + ' then ' + \
repr(self.then) + ' else ' + \
repr(self._else) + ' end'
def indented(self, level):
return indent('If-Then-Else', level) + \
self.boolean_expression.indented(level+1) + \
self.then.indented(level+1) + \
indent('Else', level+1) + \
self._else.indented(level+1)
def code(self):
l1 = label_generator.next()
l2 = label_generator.next()
return self.boolean_expression.code(l1) + \
self.then.code() + \
'goto ' + l2 + '\n' + \
l1 + ':\n' + \
self._else.code() + \
l2 + ':\n'
class While_AST:
def __init__(self, boolean_term, body):
self.boolean_term = boolean_term
self.body = body
def __repr__(self):
return 'while ' + repr(self.boolean_term) + ' do ' + \
repr(self.body) + ' end'
def indented(self, level):
return indent('While-Do', level) + \
self.boolean_term.indented(level+1) + \
self.body.indented(level+2)
def code(self):
l1 = label_generator.next()
l2 = label_generator.next()
return l1 + ':\n' + \
self.boolean_term.code(l2) + \
self.body.code() + \
'goto ' + l1 + '\n' + \
l2 + ':\n'
class Assign_AST:
def __init__(self, identifier, expression):
self.identifier = identifier
self.expression = expression
def __repr__(self):
return repr(self.identifier) + ':=' + repr(self.expression)
def indented(self, level):
return indent('Assign', level) + \
self.identifier.indented(level+1) + \
self.expression.indented(level+1)
def code(self):
loc = symbol_table.location(self.identifier.identifier)
return self.expression.code() + \
'istore ' + str(loc) + '\n'
class Write_AST:
def __init__(self, expression):
self.expression = expression
def __repr__(self):
return 'write ' + repr(self.expression)
def indented(self, level):
return indent('Write', level) + self.expression.indented(level+1)
def code(self):
return 'getstatic java/lang/System/out Ljava/io/PrintStream;\n' + \
self.expression.code() + \
'invokestatic java/lang/String/valueOf(I)Ljava/lang/String;\n' + \
'invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V\n'
class Read_AST:
def __init__(self, identifier):
self.identifier = identifier
def __repr__(self):
return 'read ' + repr(self.identifier)
def indented(self, level):
return indent('Read', level) + self.identifier.indented(level+1)
def code(self):
java_scanner = symbol_table.location('Java Scanner')
loc = symbol_table.location(self.identifier.identifier)
return 'aload ' + str(java_scanner) + '\n' + \
'invokevirtual java/util/Scanner.nextInt()I\n' + \
'istore ' + str(loc) + '\n'
class Comparison_AST:
def __init__(self, left, op, right):
self.left = left
self.op = op
self.right = right
def __repr__(self):
op = { Token.LESS:'<', Token.EQ:'=', Token.GRTR:'>',
Token.LEQ:'<=', Token.NEQ:'!=', Token.GEQ:'>=' }
return repr(self.left) + op[self.op] + repr(self.right)
def indented(self, level):
return indent(self.op, level) + \
self.left.indented(level+1) + \
self.right.indented(level+1)
def true_code(self, label):
op = { Token.LESS:'if_icmplt', Token.EQ:'if_icmpeq',
Token.GRTR:'if_icmpgt', Token.LEQ:'if_icmple',
Token.NEQ:'if_icmpne', Token.GEQ:'if_icmpge' }
return self.left.code() + \
self.right.code() + \
op[self.op] + ' ' + label + '\n'
def false_code(self, label):
# Negate each comparison because of jump to "false" label.
op = { Token.LESS:'if_icmpge', Token.EQ:'if_icmpne',
Token.GRTR:'if_icmple', Token.LEQ:'if_icmpgt',
Token.NEQ:'if_icmpeq', Token.GEQ:'if_icmplt' }
return self.left.code() + \
self.right.code() + \
op[self.op] + ' ' + label + '\n'
class Expression_AST:
def __init__(self, left, op, right):
self.left = left
self.op = op
self.right = right
def __repr__(self):
op = { Token.ADD:'+', Token.SUB:'-', Token.MUL:'*', Token.DIV:'/' }
return '(' + repr(self.left) + op[self.op] + repr(self.right) + ')'
def indented(self, level):
return indent(self.op, level) + \
self.left.indented(level+1) + \
self.right.indented(level+1)
def code(self):
op = { Token.ADD:'iadd', Token.SUB:'isub',
Token.MUL:'imul', Token.DIV:'idiv' }
return self.left.code() + \
self.right.code() + \
op[self.op] + '\n'
class Number_AST:
def __init__(self, number):
self.number = number
def __repr__(self):
return self.number
def indented(self, level):
return indent(self.number, level)
def code(self): # works only for short numbers
return 'sipush ' + self.number + '\n'
class Identifier_AST:
def __init__(self, identifier):
self.identifier = identifier
def __repr__(self):
return self.identifier
def indented(self, level):
return indent(self.identifier, level)
def code(self):
loc = symbol_table.location(self.identifier)
return 'iload ' + str(loc) + '\n'
class BooleanFactor_AST:
def __init__(self, condition, logic):
self.condition = condition
self.logic = logic
def __repr__(self):
if self.logic == False:
return 'NOT ' + repr(self.condition)
else:
return repr(self.condition)
def indented(self, level):
if self.logic == False:
return indent('NOT ', level) + self.condition.indented(level + 1)
else:
return self.condition.indented(level)
def false_code(self, label):
if self.logic == True:
return self.condition.false_code(label)
else:
return self.condition.true_code(label)
return
def true_code(self, label):
if self.logic == True:
return self.condition.true_code(label)
else:
return self.condition.false_code(label)
class BooleanTerm_AST:
def __init__(self, terms):
self.terms = terms
def __repr__(self):
result = repr(self.terms[0])
for term in self.terms[1:]:
result = result + ' AND ' + repr(term)
return result
def indented(self, level):
result = self.terms[0].indented(level)
for term in self.terms[1:]:
result = result + indent('AND', level)
result = result + term.indented(level)
return result
def code(self, label):
result = ''
for term in self.terms:
result = result + term.false_code(label)
return result
class BooleanExpression_AST:
def __init__(self, expressions):
self.expressions = expressions
def __repr__(self):
result = repr(self.expressions[0])
for expression in self.expressions[1:]:
result = result + ' OR ' + repr(expression)
return result
def indented(self, level):
result = self.expressions[0].indented(level)
indentation = 0
for expression in self.expressions[1:]:
indentation += 1
result = result + indent('OR', level + indentation)
result = result + expression.indented(level + indentation)
return result
def code(self, label):
result = ''
for expression in self.expressions:
result = result + expression.code(label)
return result
# The following methods comprise the recursive-descent parser.
def program():
sts = statements()
return Program_AST(sts)
def statements():
result = [statement()]
while scanner.lookahead() == Token.SEM:
scanner.consume(Token.SEM)
st = statement()
result.append(st)
return Statements_AST(result)
def statement():
if scanner.lookahead() == Token.IF:
return if_statement()
elif scanner.lookahead() == Token.WHILE:
return while_statement()
elif scanner.lookahead() == Token.ID:
return assignment()
elif scanner.lookahead() == Token.READ:
return read();
elif scanner.lookahead() == Token.WRITE:
return write();
else: # error
return scanner.consume(Token.IF, Token.WHILE, Token.ID)
def if_statement():
scanner.consume(Token.IF)
condition = boolean_expression()
scanner.consume(Token.THEN)
then = statements()
if scanner.lookahead() == Token.END:
scanner.consume(Token.END)
return If_AST(condition, then)
else:
scanner.consume(Token.ELSE)
_else = statements()
scanner.consume(Token.END)
return If_Else_AST(condition, then, _else)
def while_statement():
scanner.consume(Token.WHILE)
condition = boolean_expression()
scanner.consume(Token.DO)
body = statements()
scanner.consume(Token.END)
return While_AST(condition, body)
def assignment():
ident = identifier()
scanner.consume(Token.BEC)
expr = expression()
return Assign_AST(ident, expr)
def read():
scanner.consume(Token.READ)
variable = identifier()
return Read_AST(variable)
def write():
scanner.consume(Token.WRITE)
expr = expression()
return Write_AST(expr)
def comparison():
left = expression()
op = scanner.consume(Token.LESS, Token.EQ, Token.GRTR,
Token.LEQ, Token.NEQ, Token.GEQ)
right = expression()
return Comparison_AST(left, op, right)
def expression():
result = term()
while scanner.lookahead() in [Token.ADD, Token.SUB]:
op = scanner.consume(Token.ADD, Token.SUB)
tree = term()
result = Expression_AST(result, op, tree)
return result
def term():
result = factor()
while scanner.lookahead() in [Token.MUL, Token.DIV]:
op = scanner.consume(Token.MUL, Token.DIV)
tree = factor()
result = Expression_AST(result, op, tree)
return result
def factor():
if scanner.lookahead() == Token.LPAR:
scanner.consume(Token.LPAR)
result = expression()
scanner.consume(Token.RPAR)
return result
elif scanner.lookahead() == Token.NUM:
value = scanner.consume(Token.NUM)
return Number_AST(value)
elif scanner.lookahead() == Token.ID:
return identifier()
else: # error
return scanner.consume(Token.LPAR, Token.NUM, Token.ID)
def identifier():
value = scanner.consume(Token.ID)
return Identifier_AST(value)
def boolean_factor():
if scanner.lookahead() == Token.NOT:
scanner.consume(Token.NOT)
logic = False
else:
logic = True
result = comparison()
return BooleanFactor_AST(result, logic)
def boolean_term():
result = [boolean_factor()]
while scanner.lookahead() in [Token.AND]:
scanner.consume(scanner.lookahead())
temp = boolean_factor()
result.append(temp)
return BooleanTerm_AST(result)
def boolean_expression():
result = [boolean_term()]
while scanner.lookahead() in [Token.OR]:
scanner.consume(scanner.lookahead())
temp = boolean_term()
result.append(temp)
return BooleanExpression_AST(result)
# Initialise scanner, symbol table and label generator.
#scanner = Scanner(open('test.txt'))
scanner = Scanner(sys.stdin)
symbol_table = Symbol_Table()
symbol_table.location('Java Scanner') # fix a location for the Java Scanner
label_generator = Label()
# Uncomment the following to test the scanner without the parser.
# This shows a list of all tokens in the input.
#
#token = scanner.lookahead()
#while token != None:
# print(token)
# scanner.consume(token)
# token = scanner.lookahead()
#exit()
# Call the parser.
ast = program()
assert scanner.lookahead() == None
# Uncomment the following to test the parser without the code generator.
# The first line gives back the program by calling __repr__ of the AST classes.
# The second line shows the syntax tree with levels indicated by indentation.
#
#print(ast)
#print(ast.indented(0))
#exit()
# Call the code generator.
# This translates the abstract syntax tree to JVM bytecode.
# It can be assembled to a class file by Jasmin: http://jasmin.sourceforge.net/
print(ast.code())
测试bat文件
python compiler.py <test.txt> Program.j
java -Xmx100m -jar jasmin.jar Program.j
java -Xmx100m Program < testInput.txt > test_output.txt
和语言(BNF)
Program = Statements
Statements = Statement (; Statement)
Statement = If | While | Assignment
If = if Comparison then Statements end
While = while Comparison do Statements end
Assignment = identifier := Expression
Comparison = Expression Relation Expression
Relation = = | != | < | <= | > | >=
Expression = Term ((+ | -) Term)
Term = Factor ((* | /) Factor)
Factor = (Expression) | number | identifier
BooleanExpression = BooleanTerm (or BooleanTerm)*
BooleanTerm = BooleanFactor (and BooleanFactor)*
BooleanFactor = not BooleanFactor | Comparison
我认为这些都是相关的,如果你在这个方面帮助我,那就欢呼吧
答案 0 :(得分:1)
如果你想要一个链接OR的方法和AND你可以使用这个属性:
p v q === ¬p ^ ¬q
等效,您可以在 AND表单中处理所有内容。例如。
p v q ^ r v s === ¬p ^ ¬q ^ ¬r ^ ¬s
因此,使用算法评估 AND form 中的表达式很简单。
我猜表达式没有任何括号,换句话说你需要优先考虑分组符号(),[],{}。