在cygwin / gfortran下编译Fortran程序给出了“_WinMain @ 16'的未定义引用”

时间:2013-05-12 09:01:06

标签: compiler-errors cygwin fortran gfortran

在Cygwin终端,我输入

$ gfortran -o threed_euler_fluxes_v3.exe threed_euler_fluxes_v3.f90

我收到了编译错误

/usr/lib/gcc/i686-pc-cygwin/4.5.3/../../../libcygwin.a(libcmain.o): In function `main':
/usr/src/debug/cygwin-1.7.17-1/winsup/cygwin/lib/libcmain.c:39: undefined reference to `_WinMain@16'
collect2: ld returned 1 exit status

我也试过像这样编译

$ gfortran -o threed_euler_fluxes_v3.exe threed_euler_fluxes_v3.f90 -shared

但是当我尝试运行时,我得到一个错误,说它不是一个有效的Windows程序?

继承完整的fortran代码。我删除了一些评论,以便将字数限制保持在30k以下original

 subroutine inviscid_roe(primL, primR, njk,  num_flux)

 implicit none
 integer , parameter :: p2 = selected_real_kind(15) ! Double precision

!Input
 real(p2), intent( in) :: primL(5), primR(5) ! Input: primitive variables
 real(p2), intent( in) :: njk(3)             ! Input: face normal vector

!Output
 real(p2), intent(out) :: num_flux(5)        ! Output: numerical flux

!Some constants
 real(p2) ::  zero = 0.0_p2
 real(p2) ::   one = 1.0_p2
 real(p2) ::   two = 2.0_p2
 real(p2) ::  half = 0.5_p2
 real(p2) :: fifth = 0.2_p2

!Local variables
 real(p2) :: nx, ny, nz                   ! Normal vector
 real(p2) :: mx, my, mz                   ! Orthogonal tangent vector
 real(p2) :: lx, ly, lz                   ! Another orthogonal tangent vector
 real(p2) :: abs_n_cross_l                ! Magnitude of n x l
 real(p2) :: uL, uR, vL, vR, wL, wR       ! Velocity components.
 real(p2) :: rhoL, rhoR, pL, pR           ! Primitive variables.
 real(p2) :: qnL, qnR, qmL, qmR, qlL, qlR ! Normal and tangent velocities
 real(p2) :: aL, aR, HL, HR               ! Speed of sound, Total enthalpy
 real(p2) :: RT,rho,u,v,w,H,a,qn, ql, qm  ! Roe-averages
 real(p2) :: drho,dqn,dql,dqm,dp,LdU(5)   ! Wave strengths
 real(p2) :: ws(5), R(5,5)                ! Wave speeds and right-eigenvectors
 real(p2) :: dws(5)                       ! Width of a parabolic fit for entropy fix
 real(p2) :: fL(5), fR(5), diss(5)        ! Fluxes ad dissipation term
 real(p2) :: gamma = 1.4_p2               ! Ratio of specific heats
 real(p2) :: temp, tempx, tempy, tempz    ! Temoprary variables

! Face normal vector (unit vector)

  nx = njk(1)
  ny = njk(2)
  nz = njk(3)



     tempx = ny*ny + nz*nz
     tempy = nz*nz + nx*nx
     tempz = nx*nx + ny*ny

     if     ( tempx >= tempy .and. tempx >= tempz ) then
       lx =  zero
       ly = -nz
       lz =  ny
     elseif ( tempy >= tempx .and. tempy >= tempz ) then
       lx = -nz
       ly =  zero
       lz =  nx
     elseif ( tempz >= tempx .and. tempz >= tempy ) then
       lx = -ny
       ly =  nx
       lz =  zero
     else
      ! Impossible to happen
      write(*,*) "subroutine inviscid_roe: Impossible to happen. Please report the problem."
      stop
     endif

!     Make it the unit vector.
      temp = sqrt( lx*lx + ly*ly + lz*lz )
       lx = lx/temp
       ly = ly/temp
       lz = lz/temp



  mx = ny*lz - nz*ly
  my = nz*lx - nx*lz
  mz = nx*ly - ny*lx

  abs_n_cross_l = sqrt(mx**2 + my**2 + mz**2)
  mx = mx / abs_n_cross_l
  my = my / abs_n_cross_l
  mz = mz / abs_n_cross_l


    rhoL = primL(1)
      uL = primL(2)
      vL = primL(3)
      wL = primL(4)
     qnL = uL*nx + vL*ny + wL*nz
     qlL = uL*lx + vL*ly + wL*lz
     qmL = uL*mx + vL*my + wL*mz
      pL = primL(5)
      aL = sqrt(gamma*pL/rhoL)
      HL = aL*aL/(gamma-one) + half*(uL*uL+vL*vL+wL*wL)
!  Right state
    rhoR = primR(1)
      uR = primR(2)
      vR = primR(3)
      wR = primR(4)
     qnR = uR*nx + vR*ny + wR*nz
     qlR = uR*lx + vR*ly + wR*lz
     qmR = uR*mx + vR*my + wR*mz
      pR = primR(5)
      aR = sqrt(gamma*pR/rhoR)
      HR = aR*aR/(gamma-one) + half*(uR*uR+vR*vR+wR*wR)



    RT = sqrt(rhoR/rhoL)
   rho = RT*rhoL                                        !Roe-averaged density
     u = (uL + RT*uR)/(one + RT)                        !Roe-averaged x-velocity
     v = (vL + RT*vR)/(one + RT)                        !Roe-averaged y-velocity
     w = (wL + RT*wR)/(one + RT)                        !Roe-averaged z-velocity
     H = (HL + RT*HR)/(one + RT)                        !Roe-averaged total enthalpy
     a = sqrt( (gamma-one)*(H-half*(u*u + v*v + w*w)) ) !Roe-averaged speed of sound
    qn = u*nx + v*ny + w*nz                             !Roe-averaged face-normal velocity
    ql = u*lx + v*ly + w*lz                             !Roe-averaged face-tangent velocity
    qm = u*mx + v*my + w*mz                             !Roe-averaged face-tangent velocity

!Wave Strengths

   drho = rhoR - rhoL !Density difference
     dp =   pR - pL   !Pressure difference
    dqn =  qnR - qnL  !Normal velocity difference
    dql =  qlR - qlL  !Tangent velocity difference in l
    dqm =  qmR - qmL  !Tangent velocity difference in m

  LdU(1) = (dp - rho*a*dqn )/(two*a*a) !Left-moving acoustic wave strength
  LdU(2) =  drho - dp/(a*a)            !Entropy wave strength
  LdU(3) = (dp + rho*a*dqn )/(two*a*a) !Right-moving acoustic wave strength
  LdU(4) = rho*dql                     !Shear wave strength
  LdU(5) = rho*dqm                     !Shear wave strength

!Absolute values of the wave speeds

  ws(1) = abs(qn-a) !Left-moving acoustic wave speed
  ws(2) = abs(qn)   !Entropy wave speed
  ws(3) = abs(qn+a) !Right-moving acoustic wave speed
  ws(4) = abs(qn)   !Shear wave speed
  ws(5) = abs(qn)   !Shear wave speed

!Harten's Entropy Fix JCP(1983), 49, pp357-393: only for the nonlinear fields.
!NOTE: It avoids vanishing wave speeds by making a parabolic fit near ws = 0.

  dws(1) = fifth
   if ( ws(1) < dws(1) ) ws(1) = half * ( ws(1)*ws(1)/dws(1)+dws(1) )
  dws(3) = fifth
   if ( ws(3) < dws(3) ) ws(3) = half * ( ws(3)*ws(3)/dws(3)+dws(3) )

!Right Eigenvectors

! Left-moving acoustic wave
  R(1,1) = one    
  R(2,1) = u - a*nx
  R(3,1) = v - a*ny
  R(4,1) = w - a*nz
  R(5,1) = H - a*qn

! Entropy wave
  R(1,2) = one
  R(2,2) = u
  R(3,2) = v 
  R(4,2) = w
  R(5,2) = half*(u*u + v*v + w*w)

! Right-moving acoustic wave
  R(1,3) = one
  R(2,3) = u + a*nx
  R(3,3) = v + a*ny
  R(4,3) = w + a*nz
  R(5,3) = H + a*qn

! Shear wave
  R(1,4) = zero
  R(2,4) = lx
  R(3,4) = ly
  R(4,4) = lz
  R(5,4) = ql

! Shear wave
  R(1,5) = zero
  R(2,5) = mx
  R(3,5) = my
  R(4,5) = mz
  R(5,5) = qm



 diss(:) = ws(1)*LdU(1)*R(:,1) + ws(2)*LdU(2)*R(:,2) + ws(3)*LdU(3)*R(:,3) &
         + ws(4)*LdU(4)*R(:,4) + ws(5)*LdU(5)*R(:,5)



  fL(1) = rhoL*qnL
  fL(2) = rhoL*qnL * uL + pL*nx
  fL(3) = rhoL*qnL * vL + pL*ny
  fL(4) = rhoL*qnL * wL + pL*nz
  fL(5) = rhoL*qnL * HL

  fR(1) = rhoR*qnR
  fR(2) = rhoR*qnR * uR + pR*nx
  fR(3) = rhoR*qnR * vR + pR*ny
  fR(4) = rhoR*qnR * wR + pR*nz
  fR(5) = rhoR*qnR * HR



  num_flux = half * (fL + fR - diss)


 subroutine inviscid_roe_n(primL, primR, njk,  num_flux)

 implicit none
 integer , parameter :: p2 = selected_real_kind(15) ! Double precision

!Input
 real(p2), intent( in) :: primL(5), primR(5) ! Input: primitive variables
 real(p2), intent( in) :: njk(3)             ! Input: face normal vector

!Output
 real(p2), intent(out) :: num_flux(5)        ! Output: numerical flux

!Some constants
 real(p2) ::  zero = 0.0_p2
 real(p2) ::   one = 1.0_p2
 real(p2) ::   two = 2.0_p2
 real(p2) ::  half = 0.5_p2
 real(p2) :: fifth = 0.2_p2

!Local variables
 real(p2) :: nx, ny, nz                   ! Normal vector
 real(p2) :: uL, uR, vL, vR, wL, wR       ! Velocity components.
 real(p2) :: rhoL, rhoR, pL, pR           ! Primitive variables.
 real(p2) :: qnL, qnR                     ! Normal velocities
 real(p2) :: aL, aR, HL, HR               ! Speed of sound, Total enthalpy
 real(p2) :: RT,rho,u,v,w,H,a,qn          ! Roe-averages
 real(p2) :: drho,dqn,dp,LdU(4)           ! Wave strengths
 real(p2) :: du, dv, dw                   ! Velocity differences
 real(p2) :: ws(4), R(5,4)                ! Wave speeds and right-eigenvectors
 real(p2) :: dws(4)                       ! Width of a parabolic fit for entropy fix
 real(p2) :: fL(5), fR(5), diss(5)        ! Fluxes ad dissipation term
 real(p2) :: gamma = 1.4_p2               ! Ratio of specific heats

! Face normal vector (unit vector)

  nx = njk(1)
  ny = njk(2)
  nz = njk(3)

!Primitive and other variables.

!  Left state
    rhoL = primL(1)
      uL = primL(2)
      vL = primL(3)
      wL = primL(4)
     qnL = uL*nx + vL*ny + wL*nz
      pL = primL(5)
      aL = sqrt(gamma*pL/rhoL)
      HL = aL*aL/(gamma-one) + half*(uL*uL+vL*vL+wL*wL)
!  Right state
    rhoR = primR(1)
      uR = primR(2)
      vR = primR(3)
      wR = primR(4)
     qnR = uR*nx + vR*ny + wR*nz
      pR = primR(5)
      aR = sqrt(gamma*pR/rhoR)
      HR = aR*aR/(gamma-one) + half*(uR*uR+vR*vR+wR*wR)

!First compute the Roe-averaged quantities

!  NOTE: See http://www.cfdnotes.com/cfdnotes_roe_averaged_density.html for
!        the Roe-averaged density.

    RT = sqrt(rhoR/rhoL)
   rho = RT*rhoL                                        !Roe-averaged density
     u = (uL + RT*uR)/(one + RT)                        !Roe-averaged x-velocity
     v = (vL + RT*vR)/(one + RT)                        !Roe-averaged y-velocity
     w = (wL + RT*wR)/(one + RT)                        !Roe-averaged z-velocity
     H = (HL + RT*HR)/(one + RT)                        !Roe-averaged total enthalpy
     a = sqrt( (gamma-one)*(H-half*(u*u + v*v + w*w)) ) !Roe-averaged speed of sound
    qn = u*nx + v*ny + w*nz                             !Roe-averaged face-normal velocity

!Wave Strengths

   drho = rhoR - rhoL !Density difference
     dp =   pR - pL   !Pressure difference
    dqn =  qnR - qnL  !Normal velocity difference

  LdU(1) = (dp - rho*a*dqn )/(two*a*a) !Left-moving acoustic wave strength
  LdU(2) =  drho - dp/(a*a)            !Entropy wave strength
  LdU(3) = (dp + rho*a*dqn )/(two*a*a) !Right-moving acoustic wave strength
  LdU(4) = rho                         !Shear wave strength (not really, just a factor)

!Absolute values of the wave Speeds

  ws(1) = abs(qn-a) !Left-moving acoustic wave
  ws(2) = abs(qn)   !Entropy wave
  ws(3) = abs(qn+a) !Right-moving acoustic wave
  ws(4) = abs(qn)   !Shear waves

!Harten's Entropy Fix JCP(1983), 49, pp357-393: only for the nonlinear fields.
!NOTE: It avoids vanishing wave speeds by making a parabolic fit near ws = 0.

  dws(1) = fifth
   if ( ws(1) < dws(1) ) ws(1) = half * ( ws(1)*ws(1)/dws(1)+dws(1) )
  dws(3) = fifth
   if ( ws(3) < dws(3) ) ws(3) = half * ( ws(3)*ws(3)/dws(3)+dws(3) )


  R(1,1) = one    
  R(2,1) = u - a*nx
  R(3,1) = v - a*ny
  R(4,1) = w - a*nz
  R(5,1) = H - a*qn


  R(1,2) = one
  R(2,2) = u
  R(3,2) = v 
  R(4,2) = w
  R(5,2) = half*(u*u + v*v + w*w)

! Right-moving acoustic wave
  R(1,3) = one
  R(2,3) = u + a*nx
  R(3,3) = v + a*ny
  R(4,3) = w + a*nz
  R(5,3) = H + a*qn

! Two shear wave components combined into one (wave strength incorporated).
  du = uR - uL
  dv = vR - vL
  dw = wR - wL
  R(1,4) = zero
  R(2,4) = du - dqn*nx
  R(3,4) = dv - dqn*ny
  R(4,4) = dw - dqn*nz
  R(5,4) = u*du + v*dv + w*dw - qn*dqn

!Dissipation Term: |An|(UR-UL) = R|Lambda|L*dU = sum_k of [ ws(k) * R(:,k) * L*dU(k) ]

 diss(:) = ws(1)*LdU(1)*R(:,1) + ws(2)*LdU(2)*R(:,2) &
         + ws(3)*LdU(3)*R(:,3) + ws(4)*LdU(4)*R(:,4)

!Compute the physical flux: fL = Fn(UL) and fR = Fn(UR)

  fL(1) = rhoL*qnL
  fL(2) = rhoL*qnL * uL + pL*nx
  fL(3) = rhoL*qnL * vL + pL*ny
  fL(4) = rhoL*qnL * wL + pL*nz
  fL(5) = rhoL*qnL * HL

  fR(1) = rhoR*qnR
  fR(2) = rhoR*qnR * uR + pR*nx
  fR(3) = rhoR*qnR * vR + pR*ny
  fR(4) = rhoR*qnR * wR + pR*nz
  fR(5) = rhoR*qnR * HR

! This is the numerical flux: Roe flux = 1/2 *[  Fn(UL)+Fn(UR) - |An|(UR-UL) ]

  num_flux = half * (fL + fR - diss)

!Normal max wave speed in the normal direction.
!  wsn = abs(qn) + a

 end subroutine inviscid_roe_n

 subroutine inviscid_rotated_rhll(primL, primR, njk,  num_flux)

 implicit none
 integer , parameter :: p2 = selected_real_kind(15) ! Double precision

!Input
 real(p2), intent( in) :: primL(5), primR(5) ! Input: primitive variables
 real(p2), intent( in) :: njk(3)             ! Input: face normal vector

!Output
 real(p2), intent(out) :: num_flux(5)        ! Output: numerical flux

!Some constants
 real(p2) ::  zero = 0.0_p2
 real(p2) ::   one = 1.0_p2
 real(p2) ::   two = 2.0_p2
 real(p2) ::  half = 0.5_p2
 real(p2) :: fifth = 0.2_p2

!Local variables
 real(p2) :: nx, ny, nz                     ! Face normal vector
 real(p2) :: uL, uR, vL, vR, wL, wR         ! Velocity components.
 real(p2) :: rhoL, rhoR, pL, pR             ! Primitive variables.
 real(p2) :: qnL, qnR                       ! Normal velocity
 real(p2) :: aL, aR, HL, HR                 ! Speed of sound, Total enthalpy
 real(p2) :: RT,rho,u,v,w,H,a,qn            ! Roe-averages
 real(p2) :: drho,dqn,dp,LdU(4)             ! Wave strengths
 real(p2) :: du, dv, dw                     ! Velocity conponent differences
 real(p2) :: eig(4)                         ! Eigenvalues
 real(p2) :: ws(4), R(5,4)                  ! Absolute Wave speeds and right-eigenvectors
 real(p2) :: dws(4)                         ! Width of a parabolic fit for entropy fix
 real(p2) :: fL(5), fR(5), diss(5)          ! Fluxes ad dissipation term

 real(p2) :: gamma = 1.4_p2                 ! Ratio of specific heats

 real(p2) :: SRp,SLm                        ! Wave speeds for the HLL part
 real(p2) :: nx1, ny1, nz1                  ! Vector along which HLL is applied
 real(p2) :: nx2, ny2, nz2                  ! Vector along which Roe is applied
 real(p2) :: alpha1, alpha2                 ! Projections of the new normals
 real(p2) :: abs_dq                         ! Magnitude of the velocity difference
 real(p2) :: temp, tempx, tempy, tempz      ! Temporary variables

! Face normal vector (unit vector)

  nx = njk(1)
  ny = njk(2)
  nz = njk(3)

!Primitive and other variables.

!  Left state
    rhoL = primL(1)
      uL = primL(2)
      vL = primL(3)
      wL = primL(4)
     qnL = uL*nx + vL*ny + wL*nz
      pL = primL(5)
      aL = sqrt(gamma*pL/rhoL)
      HL = aL*aL/(gamma-one) + half*(uL*uL+vL*vL+wL*wL)

!  Right state
    rhoR = primR(1)
      uR = primR(2)
      vR = primR(3)
      wR = primR(4)
     qnR = uR*nx + vR*ny + wR*nz
      pR = primR(5)
      aR = sqrt(gamma*pR/rhoR)
      HR = aR*aR/(gamma-one) + half*(uR*uR+vR*vR+wR*wR)

!Compute the physical flux: fL = Fn(UL) and fR = Fn(UR)

  fL(1) = rhoL*qnL
  fL(2) = rhoL*qnL * uL + pL*nx
  fL(3) = rhoL*qnL * vL + pL*ny
  fL(4) = rhoL*qnL * wL + pL*nz
  fL(5) = rhoL*qnL * HL

  fR(1) = rhoR*qnR
  fR(2) = rhoR*qnR * uR + pR*nx
  fR(3) = rhoR*qnR * vR + pR*ny
  fR(4) = rhoR*qnR * wR + pR*nz
  fR(5) = rhoR*qnR * HR



    abs_dq = sqrt( (uR-uL)**2 + (vR-vL)**2 + (wR-wL)**2 )


  if ( abs_dq > 1.0e-12_p2) then

       nx1 = (uR-uL)/abs_dq
       ny1 = (vR-vL)/abs_dq
       nz1 = (wR-wL)/abs_dq



     tempx = ny*ny + nz*nz
     tempy = nz*nz + nx*nx
     tempz = nx*nx + ny*ny

     if     ( tempx >= tempy .and. tempx >= tempz ) then
       nx1 =  zero
       ny1 = -nz
       nz1 =  ny
     elseif ( tempy >= tempx .and. tempy >= tempz ) then
       nx1 = -nz
       ny1 =  zero
       nz1 =  nx
     elseif ( tempz >= tempx .and. tempz >= tempy ) then
       nx1 = -ny
       ny1 =  nx
       nz1 =  zero
     else
      ! Impossible to happen
      write(*,*) "inviscid_rotated_rhll: Impossible to happen. Please report the problem."
      stop
     endif

!     Make it the unit vector.
      temp = sqrt( nx1*nx1 + ny1*ny1 + nz1*nz1 )
       nx1 = nx1/temp
       ny1 = ny1/temp
       nz1 = nz1/temp

  endif

    alpha1 = nx*nx1 + ny*ny1 + nz*nz1

! Make alpha1 always positive.
      temp = sign(one,alpha1)
       nx1 = temp * nx1
       ny1 = temp * ny1
       nz1 = temp * nz1
    alpha1 = temp * alpha1

!n2 = direction perpendicular to n1.
!     Note: There are infinitely many choices for this vector.
!           The best choice may be discovered in future.
! Here, we employ the formula (4.4) in the paper:
!     (nx2,ny2,nz2) = (n1xn)xn1 / |(n1xn)xn1|    ('x' is the vector product.)

!  (tempx,tempy,tempz) = n1xn
     tempx = ny1*nz - nz1*ny
     tempy = nz1*nx - nx1*nz
     tempz = nx1*ny - ny1*nx

!  (nx2,ny2,nz2) = (n1xn)xn1
     nx2 = tempy*nz1 - tempz*ny1
     ny2 = tempz*nx1 - tempx*nz1
     nz2 = tempx*ny1 - tempy*nx1

!  Make n2 the unit vector
     temp = sqrt( nx2*nx2 + ny2*ny2 + nz2*nz2 )
       nx2 = nx2/temp
       ny2 = ny2/temp
       nz2 = nz2/temp

    alpha2 = nx*nx2 + ny*ny2 + nz*nz2

!  Make alpha2 always positive.
      temp = sign(one,alpha2)
       nx2 = temp * nx2
       ny2 = temp * ny2
       nz2 = temp * nz2
    alpha2 = temp * alpha2

!--------------------------------------------------------------------------------
!Now we are going to compute the Roe flux with n2 as the normal with modified 
!wave speeds (5.12). NOTE: the Roe flux here is computed without tangent vectors.
!See "I do like CFD, VOL.1" for details: page 57, Equation (3.6.31).

!First compute the Roe-averaged quantities

!  NOTE: See http://www.cfdnotes.com/cfdnotes_roe_averaged_density.html for
!        the Roe-averaged density.

      RT = sqrt(rhoR/rhoL)
     rho = RT*rhoL                                        !Roe-averaged density.
       u = (uL + RT*uR)/(one + RT)                        !Roe-averaged x-velocity
       v = (vL + RT*vR)/(one + RT)                        !Roe-averaged y-velocity
       w = (wL + RT*wR)/(one + RT)                        !Roe-averaged z-velocity
       H = (HL + RT*HR)/(one + RT)                        !Roe-averaged total enthalpy
       a = sqrt( (gamma-one)*(H-half*(u*u + v*v + w*w)) ) !Roe-averaged speed of sound

!----------------------------------------------------
!Compute the wave speed estimates for the HLL part,
!following Einfeldt:
!
! B. Einfeldt, On Godunov-type methods for gas dynamics,
! SIAM Journal on Numerical Analysis 25 (2) (1988) 294–318.
!
! Note: HLL is actually applied to n1, but this is
!       all we need to incorporate HLL. See JCP2008 paper.

     qn  = u *nx1 + v *ny1 + w *nz1
     qnL = uL*nx1 + vL*ny1 + wL*nz1
     qnR = uR*nx1 + vR*ny1 + wR*nz1
     SLm = min( zero, qn - a, qnL - aL ) !Minimum wave speed estimate
     SRp = max( zero, qn + a, qnR + aR ) !Maximum wave speed estimate

! This is the only place where n1=(nx1,ny1,nz1) is used.
! n1=(nx1,ny1,nz1) is never used below.
!----------------------------------------------------

!Wave Strengths

     qn  = u *nx2 + v *ny2 + w *nz2
     qnL = uL*nx2 + vL*ny2 + wL*nz2
     qnR = uR*nx2 + vR*ny2 + wR*nz2

    drho = rhoR - rhoL  !Density difference
      dp =   pR - pL    !Pressure difference
     dqn =  qnR - qnL   !Normal velocity difference

  LdU(1) = (dp - rho*a*dqn )/(two*a*a) !Left-moving acoustic wave strength
  LdU(2) =  drho - dp/(a*a)            !Entropy wave strength
  LdU(3) = (dp + rho*a*dqn )/(two*a*a) !Right-moving acoustic wave strength
  LdU(4) = rho                         !Shear wave strength (not really, just a factor)

!Wave Speed (Eigenvalues)

  eig(1) = qn-a !Left-moving acoustic wave velocity
  eig(2) = qn   !Entropy wave velocity
  eig(3) = qn+a !Right-moving acoustic wave velocity
  eig(4) = qn   !Shear wave velocity

!Absolute values of the wave speeds (Eigenvalues)

   ws(1) = abs(qn-a) !Left-moving acoustic wave speed
   ws(2) = abs(qn)   !Entropy wave speed
   ws(3) = abs(qn+a) !Right-moving acoustic wave speed
   ws(4) = abs(qn)   !Shear wave speed

!Harten's Entropy Fix JCP(1983), 49, pp357-393: only for the nonlinear fields.
!NOTE: It avoids vanishing wave speeds by making a parabolic fit near ws = 0.

  dws(1) = fifth
   if ( ws(1) < dws(1) ) ws(1) = half * ( ws(1)*ws(1)/dws(1)+dws(1) )
  dws(3) = fifth
   if ( ws(3) < dws(3) ) ws(3) = half * ( ws(3)*ws(3)/dws(3)+dws(3) )

!Combine the wave speeds for Rotated-RHLL: Eq.(5.12) in the original JCP2008 paper.

      ws = alpha2*ws - (alpha1*two*SRp*SLm + alpha2*(SRp+SLm)*eig)/(SRp-SLm)

!Below, we compute the Roe dissipation term in the direction n2
!with the above modified wave speeds. HLL wave speeds act something like
!the entropy fix or eigenvalue limiting; they contribute only by the amount
!given by the fraction, alpha1 (less than or equal to 1.0). See JCP2008 paper.

!Right Eigenvectors:
!Note: Two shear wave components are combined into one, so that tangent vectors
!      are not required. And that's why there are only 4 vectors here.

! Left-moving acoustic wave
  R(1,1) = one    
  R(2,1) = u - a*nx2
  R(3,1) = v - a*ny2
  R(4,1) = w - a*nz2
  R(5,1) = H - a*qn

! Entropy wave
  R(1,2) = one
  R(2,2) = u
  R(3,2) = v 
  R(4,2) = w
  R(5,2) = half*(u*u + v*v + w*w)

! Right-moving acoustic wave
  R(1,3) = one
  R(2,3) = u + a*nx2
  R(3,3) = v + a*ny2
  R(4,3) = w + a*nz2
  R(5,3) = H + a*qn

! Two shear wave components combined into one (wave strength incorporated).
  du = uR - uL
  dv = vR - vL
  dw = wR - wL
  R(1,4) = zero
  R(2,4) = du - dqn*nx2
  R(3,4) = dv - dqn*ny2
  R(4,4) = dw - dqn*nz2
  R(5,4) = u*du + v*dv + w*dw - qn*dqn

!Dissipation Term: Roe dissipation with the modified wave speeds.
! |An|dU = R|Lambda|L*dU = sum_k of [ ws(k) * R(:,k) * L*dU(k) ], where n=n2.

 diss(:) = ws(1)*LdU(1)*R(:,1) + ws(2)*LdU(2)*R(:,2) &
         + ws(3)*LdU(3)*R(:,3) + ws(4)*LdU(4)*R(:,4)

!Compute the Rotated-RHLL flux. (It looks like the HLL flux with Roe dissipation.)

  num_flux = (SRp*fL - SLm*fR)/(SRp-SLm) - half*diss

!Normal max wave speed in the normal direction.
!  wsn = abs(qn) + a

 end subroutine inviscid_rotated_rhll
!--------------------------------------------------------------------------------

1 个答案:

答案 0 :(得分:8)

您的文件根本不是程序!它是子程序的集合。您无法将其编译为作为程序运行,仅作为目标文件或库(尝试-c-shared)。您必须添加主程序体才能将其编译为程序并运行它!