通过使用cdef开始使用cython

时间:2013-05-07 18:23:15

标签: python function cython

我不明白如何使用cython设置和运行代码。

我将cdefdouble等添加到我的相关代码中。

setup.py当然没有使用名称hello。 cython doc

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [Extension("hello", ["hello.pyx"])]

setup(
  name = 'Hello world app',
  cmdclass = {'build_ext': build_ext},
  ext_modules = ext_modules
)

修改

重新定义问题,使其成为一个具体的例子。

我想通过Cython运行这个ODE系统。我不确定double是否是最佳选择,但数字的大小为10到10,并且是非整数。

所以我想在更大的代码中调用它,其中mus是在调用模块的脚本中定义的变量。我有setup.py文件来编译pyx文件。我不确定我需要做什么,所以我现在可以打电话给这个颂歌。假设我将模块命名为3bodyproblem。然后我会在scipt中将其称为import 3bodyproblem,然后执行`3bodyproblem.3bodyproblem(此输入将是什么)'

我正在阅读intro to cython for odes,但我不确定如何使用他的例子。此外,如果需要采用rk格式,请参阅第一个代码下面的代码。

代码1

cdef deriv(double u, dt):
    cdef double u[0], u[1], u[2]                                                 
    return [u[3],
            u[4],
            u[5],
            -mus * u[0] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5,
            -mus * u[1] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5,
            -mus * u[2] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5]


dt = np.linspace(0.0, t12sec, t12sec)
u = odeint(deriv, u0, dt, atol = 1e-13, rtol = 1e-13)
x, y, z, vx, vy, vz = u.T

代码2

cdef deriv(dt, double u):
        cdef double u[0], u[1], u[2], u[3], u[4], u[5]
        return [u[3],
                u[4],
                u[5],
                -mus * u[0] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5,
                -mus * u[1] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5,
                -mus * u[2] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5]

solver = ode(deriv).set_integrator('dop853')
solver.set_initial_value(u0)
z = np.zeros(300000)


for ii in range(300000):
    z[ii] = solver.integrate(dt[ii])[0]


x, y, z, x2, y2, z2 = z.T

如果我只是尝试编译代码1,则cython不知道定义较大.py文件的变量。我想避免在cython代码中设置变量,以便在没有重新编译的地方使用它。以下是错误:

Error compiling Cython file:
------------------------------------------------------------
...

import numpy as np
from scipy.integrate import odeint

cdef deriv(double u, dt):
    cdef double u[0], u[1], u[2]                                                 
                ^
------------------------------------------------------------

ODEcython.pyx:7:17: 'u' redeclared 

Error compiling Cython file:
------------------------------------------------------------
...

import numpy as np
from scipy.integrate import odeint

cdef deriv(double u, dt):
    cdef double u[0], u[1], u[2]                                                 
                      ^
------------------------------------------------------------

ODEcython.pyx:7:23: 'u' redeclared 

Error compiling Cython file:
------------------------------------------------------------
...

import numpy as np
from scipy.integrate import odeint

cdef deriv(double u, dt):
    cdef double u[0], u[1], u[2]                                                 
                            ^
------------------------------------------------------------

ODEcython.pyx:7:29: 'u' redeclared 

Error compiling Cython file:
------------------------------------------------------------
...
            -mus * u[0] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5,
            -mus * u[1] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5,
            -mus * u[2] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5]


dt = np.linspace(0.0, t12sec, t12sec)
                           ^
------------------------------------------------------------

ODEcython.pyx:16:28: undeclared name not builtin: t12sec

Error compiling Cython file:
------------------------------------------------------------
...
            -mus * u[1] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5,
            -mus * u[2] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5]


dt = np.linspace(0.0, t12sec, t12sec)
u = odeint(deriv, u0, dt, atol = 1e-13, rtol = 1e-13)
               ^
------------------------------------------------------------

ODEcython.pyx:17:16: Cannot convert 'object (double, object)' to Python object

Error compiling Cython file:
------------------------------------------------------------
...
            -mus * u[1] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5,
            -mus * u[2] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5]


dt = np.linspace(0.0, t12sec, t12sec)
u = odeint(deriv, u0, dt, atol = 1e-13, rtol = 1e-13)
                   ^
------------------------------------------------------------

ODEcython.pyx:17:20: undeclared name not builtin: u0

Error compiling Cython file:
------------------------------------------------------------
...
cdef deriv(double u, dt):
    cdef double u[0], u[1], u[2]                                                 
    return [u[3],
            u[4],
            u[5],
            -mus * u[0] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5,
                ^
------------------------------------------------------------

ODEcython.pyx:11:17: undeclared name not builtin: mus
building 'ODEcython' extension
creating build
creating build/temp.linux-x86_64-2.7
x86_64-linux-gnu-gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fPIC -I/usr/include/python2.7 -c ODEcython.c -o build/temp.linux-x86_64-2.7/ODEcython.o
ODEcython.c:1:2: error: #error Do not use this file, it is the result of a failed Cython compilation.
error: command 'x86_64-linux-gnu-gcc' failed with exit status 1

也许这会有所帮助

所以我想在这样的文件中使用模块:(不同的派生函数,但只是忽略了这个想法是相同的)

import numpy as np
from scipy.integrate import ode
import pylab
from mpl_toolkits.mplot3d import Axes3D
from scipy.optimize import brentq
from scipy.optimize import fsolve

me = 5.974 * 10 ** 24  #  mass of the earth                                         
mm = 7.348 * 10 ** 22  #  mass of the moon                                          
G = 6.67259 * 10 ** -20  #  gravitational parameter                                 
re = 6378.0  #  radius of the earth in km                                           
rm = 1737.0  #  radius of the moon in km                                            
r12 = 384400.0  #  distance between the CoM of the earth and moon                   
rs = 66100.0  #  distance to the moon SOI                                           
Lambda = np.pi / 6  #  angle at arrival to SOI                                      
M = me + mm
d = 300  #  distance the spacecraft is above the Earth                              
pi1 = me / M
pi2 = mm / M
mue = 398600.0  #  gravitational parameter of earth km^3/sec^2                      
mum = G * mm  #  grav param of the moon                                             
mu = mue + mum
omega = np.sqrt(mu / r12 ** 3)
#  distance from the earth to Lambda on the SOI                                     
r1 = np.sqrt(r12 ** 2 + rs ** 2 - 2 * r12 * rs * np.cos(Lambda))
vbo = 10.85  #  velocity at burnout                                                 
h = (re + d) * vbo  #  angular momentum                                             
energy = vbo ** 2 / 2 - mue / (re + d)  #  energy                                   
v1 = np.sqrt(2.0 * (energy + mue / r1))  #  refer to the close up of moon diagram   
#  refer to diagram for angles                                                      
theta1 = np.arccos(h / (r1 * v1))
phi1 = np.arcsin(rs * np.sin(Lambda) / r1)
#                                                                                   
p = h ** 2 / mue  #  semi-latus rectum                                              
a = -mue / (2 * energy)  #  semi-major axis                                         
eccen = np.sqrt(1 - p / a)  #  eccentricity 

nu0 = 0
nu1 = np.arccos((p - r1) / (eccen * r1))


#  Solving for the eccentric anomaly                                                
def f(E0):
    return np.tan(E0 / 2) - np.sqrt((1 - eccen) / (1 + eccen)) * np.tan(0)


E0 = brentq(f, 0, 5)


def g(E1):
    return np.tan(E1 / 2) - np.sqrt((1 - eccen) / (1 + eccen)) * np.tan(nu1 / 2)


E1 = fsolve(g, 0)


#  Time of flight from r0 to SOI                                                    
deltat = (np.sqrt(a ** 3 / mue) * (E1 - eccen * np.sin(E1)
                                   - (E0 - eccen * np.sin(E0))))



#  Solve for the initial phase angle 
def s(phi0):
    return phi0 + deltat * 2 * np.pi / (27.32 * 86400) + phi1 - nu1


phi0 = fsolve(s, 0)


nu = -phi0                                                                   

gamma = 0 * np.pi / 180  #  angle in radians of the flight path                     

vx = vbo * (np.sin(gamma) * np.cos(nu) - np.cos(gamma) * np.sin(nu))
#  velocity of the bo in the x direction                                            
vy = vbo * (np.sin(gamma) * np.sin(nu) + np.cos(gamma) * np.cos(nu))
#  velocity of the bo in the y direction                                            

xrel = (re + 300.0) * np.cos(nu) - pi2 * r12


yrel = (re + 300.0) * np.sin(nu)


u0 = [xrel, yrel, 0, vx, vy, 0]


def deriv(u, dt):
    return [u[3],  #  dotu[0] = u[3]                                                
            u[4],  #  dotu[1] = u[4]                                                
            u[5],  #  dotu[2] = u[5]                                                
            (2 * omega * u[4] + omega ** 2 * u[0] - mue * (u[0] + pi2 * r12) /
             np.sqrt(((u[0] + pi2 * r12) ** 2 + u[1] ** 2) ** 3) - mum *
             (u[0] - pi1 * r12) /
             np.sqrt(((u[0] - pi1 * r12) ** 2 + u[1] ** 2) ** 3)),
            #  dotu[3] = that                                                       
            (-2 * omega * u[3] + omega ** 2 * u[1] - mue * u[1] /
             np.sqrt(((u[0] + pi2 * r12) ** 2 + u[1] ** 2) ** 3) - mum * u[1] /
             np.sqrt(((u[0] - pi1 * r12) ** 2 + u[1] ** 2) ** 3)),
            #  dotu[4] = that                                                       
            0]  #  dotu[5] = 0                                                      


dt = np.linspace(0.0, 259200.0, 259200.0)  #  secs to run the simulation            
u = odeint(deriv, u0, dt)
x, y, z, x2, y2, z2 = u.T


fig = pylab.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(x, y, z, color = 'r')
#  adding the moon                                                                  
phi = np.linspace(0, 2 * np.pi, 100)
theta = np.linspace(0, np.pi, 100)
xm = rm * np.outer(np.cos(phi), np.sin(theta)) + r12 - pi2 * r12
ym = rm * np.outer(np.sin(phi), np.sin(theta))
zm = rm * np.outer(np.ones(np.size(phi)), np.cos(theta))
ax.plot_surface(xm, ym, zm, color = '#696969', linewidth = 0)
ax.auto_scale_xyz([-8000, 385000], [-8000, 385000], [-8000, 385000])
#  adding the earth                                                                 
xe = re * np.outer(np.cos(phi), np.sin(theta)) - pi2 * r12
ye = re * np.outer(np.sin(phi), np.sin(theta))
ze = re * np.outer(np.ones(np.size(phi)), np.cos(theta))
ax.plot_surface(xe, ye, ze, color = '#4169E1', linewidth = 0)
ax.auto_scale_xyz([-8000, 385000], [-8000, 385000], [-8000, 385000])

pylab.show()

1 个答案:

答案 0 :(得分:0)

尝试这样的事情:

# hello.pyx
cimport numpy as np
import numpy as np

def deriv(np.ndarray u, double mus):
    return [u[3],
            u[4],
            u[5],
            -mus * u[0] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5,
            -mus * u[1] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5,
            -mus * u[2] / (u[0] ** 2 + u[1] ** 2 + u[2] ** 2) ** 1.5]

像以前一样构建,而不是在python中使用它:

import hello
[...]
u_new = hello.deriv(u, mus)  # or put it into odeint

cdef函数只能从c端调用,你也必须将所有参数放在函数定义中。