所以我试图将此处的算法转换为凹壳:http://repositorium.sdum.uminho.pt/bitstream/1822/6429/1/ConcaveHull_ACM_MYS.pdf
(第65页)
我已经阅读了整个内容,但我无法弄清楚如何实现sortByAngle
和angle
,我不知道我应该在其中做什么方法。这就是我到目前为止所做的:
//Main method
public static Vertex[] ConcaveHull(Vertex[] points, int k = 3)
{
if (k < 3)
throw new ArgumentException("K is required to be 3 or more", "k");
List<Vertex> hull = new List<Vertex>();
//Clean first, may have lots of duplicates
Vertex[] clean = RemoveDuplicates(points);
if (clean.Length < 3)
throw new ArgumentException("At least 3 dissimilar points reqired", "points");
if (clean.Length == 3)//This is the hull, its already as small as it can be.
return clean;
if (clean.Length < k)
throw new ArgumentException("K must be equal to or smaller then the amount of dissimilar points", "points");
Vertex firstPoint = clean[0]; //TODO find mid point
hull.Add(firstPoint);
Vertex currentPoint = firstPoint;
Vertex[] dataset = RemoveIndex(clean, 0);
double previousAngle = 0;
int step = 2;
int i;
while (((currentPoint != firstPoint) || (step == 2)) && (dataset.Length > 0))
{
if (step == 5)
dataset = Add(dataset, firstPoint);
Vertex[] kNearestPoints = nearestPoints(dataset, currentPoint, k);
Vertex[] cPoints = sortByAngle(kNearestPoints, currentPoint, previousAngle);
bool its = true;
i = 0;
while ((its) && (i < cPoints.Length))
{
i++;
int lastPoint = 0;
if (cPoints[0] == firstPoint)
lastPoint = 1;
int j = 2;
its = false;
while ((!its) && (j < hull.Count - lastPoint))
{
its = intersectsQ(hull[step - 1 - 1], cPoints[0], hull[step - i - j - 1], hull[step - j - 1]);
j++;
}
}
if (its)
{
return ConcaveHull(points, k + 1);
}
currentPoint = cPoints[0];
hull.Add(currentPoint);
previousAngle = angle(hull[step - 1], hull[step - 2]);
dataset = RemoveIndex(dataset, 0);
step++;
}
bool allInside = true;
i = dataset.Length;
while (allInside && i > 0)
{
allInside = new Polygon(dataset).Contains(currentPoint); //TODO havent finished ray casting yet.
i--;
}
if (!allInside)
return ConcaveHull(points, k + 1);
return hull.ToArray();
}
private static Vertex[] Add(Vertex[] vs, Vertex v)
{
List<Vertex> n = new List<Vertex>(vs);
n.Add(v);
return n.ToArray();
}
private static Vertex[] RemoveIndex(Vertex[] vs, int index)
{
List<Vertex> removed = new List<Vertex>();
for (int i = 0; i < vs.Length; i++)
if (i != index)
removed.Add(vs[i]);
return removed.ToArray();
}
private static Vertex[] RemoveDuplicates(Vertex[] vs)
{
List<Vertex> clean = new List<Vertex>();
VertexComparer vc = new VertexComparer();
foreach (Vertex v in vs)
{
if (!clean.Contains(v, vc))
clean.Add(v);
}
return clean.ToArray();
}
private static Vertex[] nearestPoints(Vertex[] vs, Vertex v, int k)
{
Dictionary<double, Vertex> lengths = new Dictionary<double, Vertex>();
List<Vertex> n = new List<Vertex>();
double[] sorted = lengths.Keys.OrderBy(d => d).ToArray();
for (int i = 0; i < k; i++)
{
n.Add(lengths[sorted[i]]);
}
return n.ToArray();
}
private static Vertex[] sortByAngle(Vertex[] vs, Vertex v, double angle)
{
//TODO
return new Vertex[]{};
}
private static bool intersectsQ(Vertex v1, Vertex v2, Vertex v3, Vertex v4)
{
return intersectsQ(new Edge(v1, v2), new Edge(v3, v4));
}
private static bool intersectsQ(Edge e1, Edge e2)
{
double x1 = e1.A.X;
double x2 = e1.B.X;
double x3 = e2.A.X;
double x4 = e2.B.X;
double y1 = e1.A.Y;
double y2 = e1.B.Y;
double y3 = e2.A.Y;
double y4 = e2.B.Y;
var x = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / ((x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4));
var y = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / ((x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4));
if (double.IsNaN(x) || double.IsNaN(y))
{
return false;
}
else
{
if (x1 >= x2)
{
if (!(x2 <= x && x <= x1)) { return false; }
}
else
{
if (!(x1 <= x && x <= x2)) { return false; }
}
if (y1 >= y2)
{
if (!(y2 <= y && y <= y1)) { return false; }
}
else
{
if (!(y1 <= y && y <= y2)) { return false; }
}
if (x3 >= x4)
{
if (!(x4 <= x && x <= x3)) { return false; }
}
else
{
if (!(x3 <= x && x <= x4)) { return false; }
}
if (y3 >= y4)
{
if (!(y4 <= y && y <= y3)) { return false; }
}
else
{
if (!(y3 <= y && y <= y4)) { return false; }
}
}
return true;
}
private static double angle(Vertex v1, Vertex v2)
{
// TODO fix
Vertex v3 = new Vertex(v1.X, 0);
if (Orientation(v3, v1, v2) == 0)
return 180;
double b = EuclideanDistance(v3, v1);
double a = EuclideanDistance(v1, v2);
double c = EuclideanDistance(v3, v2);
double angle = Math.Acos((Math.Pow(a, 2) + Math.Pow(b, 2) - Math.Pow(c, 2)) / (2 * a * b));
if (Orientation(v3, v1, v2) < 0)
angle = 360 - angle;
return angle;
}
private static double EuclideanDistance(Vertex v1, Vertex v2)
{
return Math.Sqrt(Math.Pow((v1.X - v2.X), 2) + Math.Pow((v1.Y - v2.Y), 2));
}
public static double Orientation(Vertex p1, Vertex p2, Vertex p)
{
double Orin = (p2.X - p1.X) * (p.Y - p1.Y) - (p.X - p1.X) * (p2.Y - p1.Y);
if (Orin > 0)
return -1;//Left
if (Orin < 0)
return 1;//Right
return 0;//Colinier
}
我知道这里有很多代码。但是我不确定我是否可以展示上下文以及没有它的情况。
其他课程:
public class Polygon
{
private Vertex[] vs;
public Polygon(Vertex[] Vertexes)
{
vs = Vertexes;
}
public Polygon(Bounds bounds)
{
vs = bounds.ToArray();
}
public Vertex[] ToArray()
{
return vs;
}
public IEnumerable<Edge> Edges()
{
if (vs.Length > 1)
{
Vertex P = vs[0];
for (int i = 1; i < vs.Length; i++)
{
yield return new Edge(P, vs[i]);
P = vs[i];
}
yield return new Edge(P, vs[0]);
}
}
public bool Contains(Vertex v)
{
return RayCasting.RayCast(this, v);
}
}
public class Edge
{
public Vertex A = new Vertex(0, 0);
public Vertex B = new Vertex(0, 0);
public Edge() { }
public Edge(Vertex a, Vertex b)
{
A = a;
B = b;
}
public Edge(double ax, double ay, double bx, double by)
{
A = new Vertex(ax, ay);
B = new Vertex(bx, by);
}
}
public class Bounds
{
public Vertex TopLeft;
public Vertex TopRight;
public Vertex BottomLeft;
public Vertex BottomRight;
public Bounds() { }
public Bounds(Vertex TL, Vertex TR, Vertex BL, Vertex BR)
{
TopLeft = TL;
TopRight = TR;
BottomLeft = BL;
BottomRight = BR;
}
public Vertex[] ToArray()
{
return new Vertex[] { TopLeft, TopRight, BottomRight, BottomLeft };
}
}
public class Vertex
{
public double X = 0;
public double Y = 0;
public Vertex() { }
public Vertex(double x, double y)
{
X = x;
Y = y;
}
public static Vertex[] Convert(string vs)
{
vs = vs.Replace("[", "");
vs = vs.Replace("]", "");
string[] spl = vs.Split(';');
List<Vertex> nvs = new List<Vertex>();
foreach (string s in spl)
{
try
{
nvs.Add(new Vertex(s));
}
catch
{
}
}
return nvs.ToArray();
}
public static string Stringify(Vertex[] vs)
{
string res = "[";
foreach (Vertex v in vs)
{
res += v.ToString();
res += ";";
}
res = res.RemoveLastCharacter();
res += "]";
return res;
}
public static string ToString(Vertex[] array)
{
string res = "[";
foreach (Vertex v in array)
res += v.ToString() + ",";
return res.RemoveLastCharacter() + "]";
}
/*
//When x < y return -1
//When x == y return 0
//When x > y return 1
public static int Compare(Vertex x, Vertex y)
{
//To find lowest
if (x.X < y.X)
{
return -1;
}
else if (x.X == y.X)
{
if (x.Y < y.Y)
{
return -1;
}
else if (x.Y == y.Y)
{
return 0;
}
else
{
return 1;
}
}
else
{
return 1;
}
}
*/
public static int CompareY(Vertex a, Vertex b)
{
if (a.Y < b.Y)
return -1;
if (a.Y == b.Y)
return 0;
return 1;
}
public static int CompareX(Vertex a, Vertex b)
{
if (a.X < b.X)
return -1;
if (a.X == b.X)
return 0;
return 1;
}
public double distance (Vertex b){
double dX = b.X - this.X;
double dY = b.Y - this.Y;
return Math.Sqrt((dX*dX) + (dY*dY));
}
public double slope (Vertex b){
double dX = b.X - this.X;
double dY = b.Y - this.Y;
return dY / dX;
}
public static int Compare(Vertex u, Vertex a, Vertex b)
{
if (a.X == b.X && a.Y == b.Y) return 0;
Vertex upper = new Vertex();
Vertex p1 = new Vertex();
Vertex p2 = new Vertex();
upper.X = (u.X + 180) * 360;
upper.Y = (u.Y + 90) * 180;
p1.X = (a.X + 180) * 360;
p1.Y = (a.Y + 90) * 180;
p2.X = (b.X + 180) * 360;
p2.Y = (b.Y + 90) * 180;
if(p1 == upper) return -1;
if(p2 == upper) return 1;
double m1 = upper.slope(p1);
double m2 = upper.slope(p2);
if (m1 == m2)
{
return p1.distance(upper) < p2.distance(upper) ? -1 : 1;
}
if (m1 <= 0 && m2 > 0) return -1;
if (m1 > 0 && m2 <= 0) return -1;
return m1 > m2 ? -1 : 1;
}
public static Vertex UpperLeft(Vertex[] vs)
{
Vertex top = vs[0];
for (int i = 1; i < vs.Length; i++)
{
Vertex temp = vs[i];
if (temp.Y > top.Y || (temp.Y == top.Y && temp.X < top.X))
{
top = temp;
}
}
return top;
}
}
答案 0 :(得分:3)
只是关于约定的注释:你应该用大写开始函数名,用小写开始变量。在函数sortByAngle
中,您同时引用参数angle
和函数angle
。
假设Angle(...)
仅用于计算两点之间的角度:
private static double Angle(Vertex v1, Vertex v2)
{
return Math.Atan2(v2.Y - v1.Y, v2.X - v1.X);
}
将为您提供从v1
到v2
的角度,以-pi和+ pi之间的弧度表示。不要混合度和弧度。我的建议是始终使用弧度,并且只在必要时转换为度,以便人类可读输出。
private static Vertex[] SortByAngle(Vertex[] vs, Vertex v, double angle)
{
List<Vertex> vertList = new List<Vertex>(vs);
vertList.Sort((v1, v2) => AngleDifference(angle, Angle(v, v1)).CompareTo(AngleDifference(angle, Angle(v, v2))));
return vertList.ToArray();
}
使用List.Sort
对顶点point
与其自身和angle
之间的最大角度差异进行排序。 v1
和v2
的顺序在输入元组中交换以降序排序,即最大差异。角度之间的差异计算如下:
private static double AngleDifference(double a, double b)
{
while (a < b - Math.PI) a += Math.PI * 2;
while (b < a - Math.PI) b += Math.PI * 2;
return Math.Abs(a - b);
}
前两行确保角度相差不超过180度。
答案 1 :(得分:2)
中有错误
private static Vertex[] nearestPoints(Vertex[] vs, Vertex v, int k)
{
Dictionary<double, Vertex> lengths = new Dictionary<double, Vertex>();
List<Vertex> n = new List<Vertex>();
double[] sorted = lengths.Keys.OrderBy(d => d).ToArray();
for (int i = 0; i < k; i++)
{
n.Add(lengths[sorted[i]]);
}
return n.ToArray();
}
根据代码,如果你有几个相同距离的顶点,函数只返回一个。由于Dictionary使用唯一键。
顺便说一下,有没有人完成这个?答案 2 :(得分:0)
我现在没有时间阅读这篇论文,但是根据我对conVEX船体算法的了解,我假设您正在寻找下一个链接点的特定方向的点。
如果是这种情况,“角度”将是船体最近的线段的角度,并且您希望按照它们与该线的角度对点进行排序。因此,您需要计算线(在船体上)和一组线(从当前点到正在考虑的每个点)之间的角度。计算的角度是正还是负取决于您是顺时针还是逆时针。要计算角度,请查看以下内容:
Calculating the angle between two lines without having to calculate the slope? (Java)
然后按角度排序。
答案 3 :(得分:0)
怎么样?
private List<Vector> sortClockwiseFromCentroid(List<Vector> points, Vector center)
{
points = points.OrderBy(x => Math.Atan2(x.X - center.X, x.Y - center.Y)).ToList();
return points;
}