相当于ios的spongycastle加密

时间:2013-05-05 02:19:22

标签: android ios commoncrypto spongycastle

这让我很难过 - 以下代码使用SpongyCastle的Android加密/解密 - 我正在尝试为iOS实现跨平台加密/解密。

以下代码(来自Android)使用PKCS7Padding处理AES 128bit CBC,使用提供的salt和密码,salt存储在mysql数据库中,密码由最终用户提供,以下代码为kelhoer改编自这个答案。

我之所以使用AES128bit是因为AES256在iOS 4+中不可用,它是在iOS5 +中引入的,并且不得不使用openssl来生成派生密钥和初始化向量(iv),据了解,苹果公司拒绝与openssl库静态链接的应用程序。

由于该平台基于iOS 4.2+,因此使用bundling and statically linking the openssl库似乎是过度杀戮,最好使用CommonCryptor库。

以下是具有Spongycastle代码的Android版本:

private static void encrypt(InputStream fin, 
    OutputStream fout, 
    String password, 
    byte[] bSalt) {
    try {
        PKCS12ParametersGenerator pGen = new PKCS12ParametersGenerator(
            new SHA256Digest()
            );
        char[] passwordChars = password.toCharArray();
        final byte[] pkcs12PasswordBytes = 
            PBEParametersGenerator.PKCS12PasswordToBytes(passwordChars);
        pGen.init(pkcs12PasswordBytes, bSalt, ITERATIONS);
        CBCBlockCipher aesCBC = new CBCBlockCipher(new AESEngine());
        ParametersWithIV aesCBCParams = 
            (ParametersWithIV) pGen.generateDerivedParameters(128, 128);
        aesCBC.init(true, aesCBCParams);
        PaddedBufferedBlockCipher aesCipher = 
            new PaddedBufferedBlockCipher(aesCBC, new PKCS7Padding());
        aesCipher.init(true, aesCBCParams);
        byte[] buf = new byte[BUF_SIZE];
        // Read in the decrypted bytes and write the cleartext to out
        int numRead = 0;
        while ((numRead = fin.read(buf)) >= 0) {
            if (numRead == 1024) {
                byte[] plainTemp = new byte[
                    aesCipher.getUpdateOutputSize(numRead)];
                int offset = 
                    aesCipher.processBytes(buf, 0, numRead, plainTemp, 0);
                final byte[] plain = new byte[offset];
                System.arraycopy(plainTemp, 0, plain, 0, plain.length);
                fout.write(plain, 0, plain.length);
            } else {
                byte[] plainTemp = new byte[aesCipher.getOutputSize(numRead)];
                int offset = 
                    aesCipher.processBytes(buf, 0, numRead, plainTemp, 0);
                int last = aesCipher.doFinal(plainTemp, offset);
                final byte[] plain = new byte[offset + last];
                System.arraycopy(plainTemp, 0, plain, 0, plain.length);
                fout.write(plain, 0, plain.length);
            }
        }
        fout.close();
        fin.close();
    } catch (Exception e) {
        e.printStackTrace();
    }

}

private static void decrypt(InputStream fin, 
    OutputStream fout, 
    String password, 
    byte[] bSalt) {
    try {
        PKCS12ParametersGenerator pGen = new PKCS12ParametersGenerator(
            new SHA256Digest()
            );
        char[] passwordChars = password.toCharArray();
        final byte[] pkcs12PasswordBytes = 
            PBEParametersGenerator.PKCS12PasswordToBytes(passwordChars);
        pGen.init(pkcs12PasswordBytes, bSalt, ITERATIONS);
        CBCBlockCipher aesCBC = new CBCBlockCipher(new AESEngine());
        ParametersWithIV aesCBCParams = 
            (ParametersWithIV) pGen.generateDerivedParameters(128, 128);
        aesCBC.init(false, aesCBCParams);
        PaddedBufferedBlockCipher aesCipher = 
            new PaddedBufferedBlockCipher(aesCBC, new PKCS7Padding());
        aesCipher.init(false, aesCBCParams);
        byte[] buf = new byte[BUF_SIZE];
        // Read in the decrypted bytes and write the cleartext to out
        int numRead = 0;
        while ((numRead = fin.read(buf)) >= 0) {
            if (numRead == 1024) {
                byte[] plainTemp = new byte[
                    aesCipher.getUpdateOutputSize(numRead)];
                int offset = 
                    aesCipher.processBytes(buf, 0, numRead, plainTemp, 0);
                // int last = aesCipher.doFinal(plainTemp, offset);
                final byte[] plain = new byte[offset];
                System.arraycopy(plainTemp, 0, plain, 0, plain.length);
                fout.write(plain, 0, plain.length);
            } else {
                byte[] plainTemp = new byte[
                    aesCipher.getOutputSize(numRead)];
                int offset = 
                    aesCipher.processBytes(buf, 0, numRead, plainTemp, 0);
                int last = aesCipher.doFinal(plainTemp, offset);
                final byte[] plain = new byte[offset + last];
                System.arraycopy(plainTemp, 0, plain, 0, plain.length);
                fout.write(plain, 0, plain.length);
            }
        }
        fout.close();
        fin.close();
    } catch (Exception e) {
        e.printStackTrace();
    }
}

然而,在iOS 4.2(使用XCode)下,我无法弄清楚如何做等效的,

这就是我在Objective C下尝试过的,其目标是解密来自Android端的数据,存储在mysql数据库中,以测试它:

+(NSData*) decrypt:(NSData*)cipherData 
    userPassword:(NSString*)argPassword 
    genSalt:(NSData*)argPtrSalt{

    size_t szPlainBufLen = cipherData.length + (kCCBlockSizeAES128);
    uint8_t *ptrPlainBuf = malloc(szPlainBufLen);
    //
    const unsigned char *ptrPasswd = 
        (const unsigned char*)[argPassword 
            cStringUsingEncoding:NSASCIIStringEncoding];
    int ptrPasswdLen = strlen(ptrPasswd);
    //
    NSString *ptrSaltStr = [[NSString alloc]
        initWithData:argPtrSalt 
        encoding:NSASCIIStringEncoding];

    const unsigned char *ptrSalt = 
        (const unsigned char *)[ptrSaltStr UTF8String];
    NSString *ptrCipherStr = 
        [[NSString alloc]initWithData:cipherData 
            encoding:NSASCIIStringEncoding];
    unsigned char *ptrCipher = (unsigned char *)[ptrCipherStr UTF8String];
    unsigned char key[kCCKeySizeAES128];
    unsigned char iv[kCCKeySizeAES128];
    //
    //int     EVP_BytesToKey(const EVP_CIPHER *type,const EVP_MD *md,
    //const unsigned char *salt, const unsigned char *data,
    //int datal, int count, unsigned char *key,unsigned char *iv);
    int i = EVP_BytesToKey(EVP_aes_128_cbc(), 
                       EVP_sha256(), 
                       ptrSalt, 
                       ptrPasswd, 
                       ptrPasswdLen, 
                       PBKDF2_ITERATIONS, 
                       key, 
                       iv);
    NSAssert(i == kCCKeySizeAES128, 
        @"Unable to generate key for AES");
    //
    size_t cipherLen = [cipherData length];
    size_t outlength = 0;
    //
    CCCryptorStatus resultCCStatus = CCCrypt(kCCDecrypt,
                                             kCCAlgorithmAES128,
                                             kCCOptionPKCS7Padding,
                                             key,
                                             kCCBlockSizeAES128,
                                             iv,
                                             ptrCipher,
                                             cipherLen,
                                             ptrPlainBuf,
                                             szPlainBufLen,
                                             &outlength);
    NSAssert(resultCCStatus == kCCSuccess, 
        @"Unable to perform PBE AES128bit decryption: %d", errno);
    NSData *ns_dta_PlainData = nil;

    if (resultCCStatus == kCCSuccess){
        ns_dta_PlainData = 
        [NSData dataWithBytesNoCopy:ptrPlainBuf length:outlength];
    }else{
        return nil;
    }
    return ns_dta_PlainData;
}

已提供数据和用户密码,并从CCCrypt获取返回代码-4304,表示解码不成功和错误。

我原以为编码方案可能会抛弃CommonCryptor的解密路由,因此转换为NSASCIIStringEncoding的方式很长。

Salt与密码数据一起存储,长度为32字节。

在这方面我缺少什么,请记住,我在加密方面很弱。

2 个答案:

答案 0 :(得分:4)

我冒昧地编写了Android端使用的PKCS12Parameters generator的直接端口,这个标题的要点就在上面。

实现也是直接复制,如找到here,密码,转换为PKCS12等效 - unicode,big-endian,最后填充两个额外的零。

生成器生成派生密钥,iv通过执行迭代次数,在本例中为1000,在Android端,使用SHA256摘要,最终生成的密钥,iv是然后用作CCCryptorCreate的参数。

使用以下代码示例也不起作用,在调用-4304时以CCCryptorFinal结束

代码摘录如下所示:

#define ITERATIONS 1000

PKCS12ParametersGenerator *pGen = [[PKCS12ParametersGenerator alloc]
        init:argPassword 
        saltedHash:argPtrSalt 
        iterCount:ITERATIONS 
        keySize:128 
        initVectSize:128]; 
//
[pGen generateDerivedParameters];
//
CCCryptorRef decryptor = NULL;
// Create and Initialize the crypto reference.
CCCryptorStatus ccStatus = CCCryptorCreate(kCCDecrypt,
                           kCCAlgorithmAES128,
                           kCCOptionPKCS7Padding,
                           pGen.derivedKey.bytes,
                           kCCKeySizeAES128,
                           pGen.derivedIV.bytes,
                           &decryptor
                           );
NSAssert(ccStatus == kCCSuccess, 
    @"Unable to initialise decryptor!");
//
size_t szPlainBufLen = cipherData.length + (kCCBlockSizeAES128);

// Calculate byte block alignment for all calls through to and including final.
size_t szPtrPlainBufSize = CCCryptorGetOutputLength(decryptor, szPlainBufLen, true);
uint8_t *ptrPlainBuf = calloc(szPtrPlainBufSize, sizeof(uint8_t));
//
// Set up initial size.
size_t remainingBytes = szPtrPlainBufSize;
uint8_t *ptr = ptrPlainBuf;
size_t movedBytes = 0;
size_t totalBytesWritten = 0;

// Actually perform the encryption or decryption.
ccStatus = CCCryptorUpdate(decryptor,
                           (const void *) cipherData.bytes,
                           szPtrPlainBufSize,
                           ptr,
                           remainingBytes,
                           &movedBytes
                           );
NSAssert(ccStatus == kCCSuccess, 
    @"Unable to update decryptor! Error: %d", ccStatus);
ptr += movedBytes;
remainingBytes -= movedBytes;
totalBytesWritten += movedBytes;
//
// Finalize everything to the output buffer.
CCCryptorStatus resultCCStatus = CCCryptorFinal(decryptor,
                          ptr,
                          remainingBytes,
                          &movedBytes
                          );

totalBytesWritten += movedBytes;

if(decryptor) {
    (void) CCCryptorRelease(decryptor);
    decryptor = NULL;
}

NSAssert(resultCCStatus == kCCSuccess, 
    @"Unable to perform PBE AES128bit decryption: %d", resultCCStatus);

有趣的是,如果我在CCCryptorFinal的{​​{1}}替换0 kCCOptionPKCS7Padding,则解密有效,对0x0000的最后通话会返回CCCryptorCreate ,即没有填充。唉,数据并不是我所期望的,无论何时“不起作用”,数据仍然完全混乱。

它在某个地方失败了,所以如果有人对如何实现等价物有任何更好的想法,我会很高兴听到其他意见。

要么改变Android方面的机制,使其“与跨平台”与iPhone兼容,要么寻求替代加密解决方案在两端兼容,代价是两者都加密较弱用于使数据交换便携的平台的两侧。

提供的输入数据:

  • Base64编码密码,其中盐和密码由':'tnNhKyJ2vvrUzAmtQV5q9uEwzzAH63sTKtLf4pOQylw=:qTBluA+aNeFnEUfkUFUEVgNYrdz7enn5W1n4Q9uBKYmFfJeSCcbsfziErsa4EU9Cz/pO0KE4WE1QdqRcvSXthQ==
  • 分隔
  • 提供的密码为f00b4r
  • 原始字符串为The quick brown fox jumped over the lazy dog and ran away

答案 1 :(得分:0)

是的,我不得不废弃Android方面的加密算法,这对于找到跨平台兼容的加密算法提出了挑战。

我已经阅读了很多关于Rob Napier's RNCryptor的内容,在谷歌搜索了我发现JNCryptor的Android等效内容之后,我采取了大胆尝试并在iOS上使用了RNCryptor。

github上分配JNCryptor代码以添加能够指定自定义设置的增强功能,并为旧版本的Android添加SpongyCastle。从那时起,两个平台都能够互换地加密/解密。

我增强JNCryptor的原因是,PKDBF2函数的迭代计数太高了 - 10,000并且是默认值(因为代码将在较旧的手机上运行 - 它抓住了 - 如果你有双/四核的话很棒!),并且需要覆盖迭代计数以使其更“可忍受” - 1,000。使用RNCryptor可以使用自定义设置。

感谢Rob Napier和Duncan Jones的工作!