这让我很难过 - 以下代码使用SpongyCastle的Android加密/解密 - 我正在尝试为iOS实现跨平台加密/解密。
以下代码(来自Android)使用PKCS7Padding处理AES 128bit CBC,使用提供的salt和密码,salt存储在mysql数据库中,密码由最终用户提供,以下代码为kelhoer改编自这个答案。
我之所以使用AES128bit是因为AES256在iOS 4+中不可用,它是在iOS5 +中引入的,并且不得不使用openssl
来生成派生密钥和初始化向量(iv),据了解,苹果公司拒绝与openssl库静态链接的应用程序。
由于该平台基于iOS 4.2+,因此使用bundling and statically linking the openssl库似乎是过度杀戮,最好使用CommonCryptor库。
以下是具有Spongycastle代码的Android版本:
private static void encrypt(InputStream fin,
OutputStream fout,
String password,
byte[] bSalt) {
try {
PKCS12ParametersGenerator pGen = new PKCS12ParametersGenerator(
new SHA256Digest()
);
char[] passwordChars = password.toCharArray();
final byte[] pkcs12PasswordBytes =
PBEParametersGenerator.PKCS12PasswordToBytes(passwordChars);
pGen.init(pkcs12PasswordBytes, bSalt, ITERATIONS);
CBCBlockCipher aesCBC = new CBCBlockCipher(new AESEngine());
ParametersWithIV aesCBCParams =
(ParametersWithIV) pGen.generateDerivedParameters(128, 128);
aesCBC.init(true, aesCBCParams);
PaddedBufferedBlockCipher aesCipher =
new PaddedBufferedBlockCipher(aesCBC, new PKCS7Padding());
aesCipher.init(true, aesCBCParams);
byte[] buf = new byte[BUF_SIZE];
// Read in the decrypted bytes and write the cleartext to out
int numRead = 0;
while ((numRead = fin.read(buf)) >= 0) {
if (numRead == 1024) {
byte[] plainTemp = new byte[
aesCipher.getUpdateOutputSize(numRead)];
int offset =
aesCipher.processBytes(buf, 0, numRead, plainTemp, 0);
final byte[] plain = new byte[offset];
System.arraycopy(plainTemp, 0, plain, 0, plain.length);
fout.write(plain, 0, plain.length);
} else {
byte[] plainTemp = new byte[aesCipher.getOutputSize(numRead)];
int offset =
aesCipher.processBytes(buf, 0, numRead, plainTemp, 0);
int last = aesCipher.doFinal(plainTemp, offset);
final byte[] plain = new byte[offset + last];
System.arraycopy(plainTemp, 0, plain, 0, plain.length);
fout.write(plain, 0, plain.length);
}
}
fout.close();
fin.close();
} catch (Exception e) {
e.printStackTrace();
}
}
private static void decrypt(InputStream fin,
OutputStream fout,
String password,
byte[] bSalt) {
try {
PKCS12ParametersGenerator pGen = new PKCS12ParametersGenerator(
new SHA256Digest()
);
char[] passwordChars = password.toCharArray();
final byte[] pkcs12PasswordBytes =
PBEParametersGenerator.PKCS12PasswordToBytes(passwordChars);
pGen.init(pkcs12PasswordBytes, bSalt, ITERATIONS);
CBCBlockCipher aesCBC = new CBCBlockCipher(new AESEngine());
ParametersWithIV aesCBCParams =
(ParametersWithIV) pGen.generateDerivedParameters(128, 128);
aesCBC.init(false, aesCBCParams);
PaddedBufferedBlockCipher aesCipher =
new PaddedBufferedBlockCipher(aesCBC, new PKCS7Padding());
aesCipher.init(false, aesCBCParams);
byte[] buf = new byte[BUF_SIZE];
// Read in the decrypted bytes and write the cleartext to out
int numRead = 0;
while ((numRead = fin.read(buf)) >= 0) {
if (numRead == 1024) {
byte[] plainTemp = new byte[
aesCipher.getUpdateOutputSize(numRead)];
int offset =
aesCipher.processBytes(buf, 0, numRead, plainTemp, 0);
// int last = aesCipher.doFinal(plainTemp, offset);
final byte[] plain = new byte[offset];
System.arraycopy(plainTemp, 0, plain, 0, plain.length);
fout.write(plain, 0, plain.length);
} else {
byte[] plainTemp = new byte[
aesCipher.getOutputSize(numRead)];
int offset =
aesCipher.processBytes(buf, 0, numRead, plainTemp, 0);
int last = aesCipher.doFinal(plainTemp, offset);
final byte[] plain = new byte[offset + last];
System.arraycopy(plainTemp, 0, plain, 0, plain.length);
fout.write(plain, 0, plain.length);
}
}
fout.close();
fin.close();
} catch (Exception e) {
e.printStackTrace();
}
}
然而,在iOS 4.2(使用XCode)下,我无法弄清楚如何做等效的,
这就是我在Objective C下尝试过的,其目标是解密来自Android端的数据,存储在mysql数据库中,以测试它:
+(NSData*) decrypt:(NSData*)cipherData
userPassword:(NSString*)argPassword
genSalt:(NSData*)argPtrSalt{
size_t szPlainBufLen = cipherData.length + (kCCBlockSizeAES128);
uint8_t *ptrPlainBuf = malloc(szPlainBufLen);
//
const unsigned char *ptrPasswd =
(const unsigned char*)[argPassword
cStringUsingEncoding:NSASCIIStringEncoding];
int ptrPasswdLen = strlen(ptrPasswd);
//
NSString *ptrSaltStr = [[NSString alloc]
initWithData:argPtrSalt
encoding:NSASCIIStringEncoding];
const unsigned char *ptrSalt =
(const unsigned char *)[ptrSaltStr UTF8String];
NSString *ptrCipherStr =
[[NSString alloc]initWithData:cipherData
encoding:NSASCIIStringEncoding];
unsigned char *ptrCipher = (unsigned char *)[ptrCipherStr UTF8String];
unsigned char key[kCCKeySizeAES128];
unsigned char iv[kCCKeySizeAES128];
//
//int EVP_BytesToKey(const EVP_CIPHER *type,const EVP_MD *md,
//const unsigned char *salt, const unsigned char *data,
//int datal, int count, unsigned char *key,unsigned char *iv);
int i = EVP_BytesToKey(EVP_aes_128_cbc(),
EVP_sha256(),
ptrSalt,
ptrPasswd,
ptrPasswdLen,
PBKDF2_ITERATIONS,
key,
iv);
NSAssert(i == kCCKeySizeAES128,
@"Unable to generate key for AES");
//
size_t cipherLen = [cipherData length];
size_t outlength = 0;
//
CCCryptorStatus resultCCStatus = CCCrypt(kCCDecrypt,
kCCAlgorithmAES128,
kCCOptionPKCS7Padding,
key,
kCCBlockSizeAES128,
iv,
ptrCipher,
cipherLen,
ptrPlainBuf,
szPlainBufLen,
&outlength);
NSAssert(resultCCStatus == kCCSuccess,
@"Unable to perform PBE AES128bit decryption: %d", errno);
NSData *ns_dta_PlainData = nil;
if (resultCCStatus == kCCSuccess){
ns_dta_PlainData =
[NSData dataWithBytesNoCopy:ptrPlainBuf length:outlength];
}else{
return nil;
}
return ns_dta_PlainData;
}
已提供数据和用户密码,并从CCCrypt
获取返回代码-4304
,表示解码不成功和错误。
我原以为编码方案可能会抛弃CommonCryptor的解密路由,因此转换为NSASCIIStringEncoding
的方式很长。
Salt与密码数据一起存储,长度为32字节。
在这方面我缺少什么,请记住,我在加密方面很弱。
答案 0 :(得分:4)
我冒昧地编写了Android端使用的PKCS12Parameters generator的直接端口,这个标题的要点就在上面。
实现也是直接复制,如找到here,密码,转换为PKCS12等效 - unicode,big-endian,最后填充两个额外的零。
生成器生成派生密钥,iv通过执行迭代次数,在本例中为1000,在Android端,使用SHA256摘要,最终生成的密钥,iv是然后用作CCCryptorCreate
的参数。
使用以下代码示例也不起作用,在调用-4304
时以CCCryptorFinal
结束
代码摘录如下所示:
#define ITERATIONS 1000
PKCS12ParametersGenerator *pGen = [[PKCS12ParametersGenerator alloc]
init:argPassword
saltedHash:argPtrSalt
iterCount:ITERATIONS
keySize:128
initVectSize:128];
//
[pGen generateDerivedParameters];
//
CCCryptorRef decryptor = NULL;
// Create and Initialize the crypto reference.
CCCryptorStatus ccStatus = CCCryptorCreate(kCCDecrypt,
kCCAlgorithmAES128,
kCCOptionPKCS7Padding,
pGen.derivedKey.bytes,
kCCKeySizeAES128,
pGen.derivedIV.bytes,
&decryptor
);
NSAssert(ccStatus == kCCSuccess,
@"Unable to initialise decryptor!");
//
size_t szPlainBufLen = cipherData.length + (kCCBlockSizeAES128);
// Calculate byte block alignment for all calls through to and including final.
size_t szPtrPlainBufSize = CCCryptorGetOutputLength(decryptor, szPlainBufLen, true);
uint8_t *ptrPlainBuf = calloc(szPtrPlainBufSize, sizeof(uint8_t));
//
// Set up initial size.
size_t remainingBytes = szPtrPlainBufSize;
uint8_t *ptr = ptrPlainBuf;
size_t movedBytes = 0;
size_t totalBytesWritten = 0;
// Actually perform the encryption or decryption.
ccStatus = CCCryptorUpdate(decryptor,
(const void *) cipherData.bytes,
szPtrPlainBufSize,
ptr,
remainingBytes,
&movedBytes
);
NSAssert(ccStatus == kCCSuccess,
@"Unable to update decryptor! Error: %d", ccStatus);
ptr += movedBytes;
remainingBytes -= movedBytes;
totalBytesWritten += movedBytes;
//
// Finalize everything to the output buffer.
CCCryptorStatus resultCCStatus = CCCryptorFinal(decryptor,
ptr,
remainingBytes,
&movedBytes
);
totalBytesWritten += movedBytes;
if(decryptor) {
(void) CCCryptorRelease(decryptor);
decryptor = NULL;
}
NSAssert(resultCCStatus == kCCSuccess,
@"Unable to perform PBE AES128bit decryption: %d", resultCCStatus);
有趣的是,如果我在CCCryptorFinal
的{{1}}替换0
kCCOptionPKCS7Padding
,则解密有效,对0x0000
的最后通话会返回CCCryptorCreate
,即没有填充。唉,数据并不是我所期望的,无论何时“不起作用”,数据仍然完全混乱。
它在某个地方失败了,所以如果有人对如何实现等价物有任何更好的想法,我会很高兴听到其他意见。
要么改变Android方面的机制,使其“与跨平台”与iPhone兼容,要么寻求替代加密解决方案在两端兼容,代价是两者都加密较弱用于使数据交换便携的平台的两侧。
提供的输入数据:
tnNhKyJ2vvrUzAmtQV5q9uEwzzAH63sTKtLf4pOQylw=:qTBluA+aNeFnEUfkUFUEVgNYrdz7enn5W1n4Q9uBKYmFfJeSCcbsfziErsa4EU9Cz/pO0KE4WE1QdqRcvSXthQ==
f00b4r
The quick brown fox jumped over the lazy dog and ran away
答案 1 :(得分:0)
是的,我不得不废弃Android方面的加密算法,这对于找到跨平台兼容的加密算法提出了挑战。
我已经阅读了很多关于Rob Napier's RNCryptor的内容,在谷歌搜索了我发现JNCryptor的Android等效内容之后,我采取了大胆尝试并在iOS上使用了RNCryptor。
在github上分配JNCryptor代码以添加能够指定自定义设置的增强功能,并为旧版本的Android添加SpongyCastle。从那时起,两个平台都能够互换地加密/解密。
我增强JNCryptor的原因是,PKDBF2函数的迭代计数太高了 - 10,000并且是默认值(因为代码将在较旧的手机上运行 - 它抓住了 - 如果你有双/四核的话很棒!),并且需要覆盖迭代计数以使其更“可忍受” - 1,000。使用RNCryptor可以使用自定义设置。
感谢Rob Napier和Duncan Jones的工作!