我有这个Viterbi解码器功能代码,这个代码非常冗长,并且没有任何评论标签可以提供帮助,我想尝试理解它。
所以任何人都可以指出一个易于理解的算法?
无论如何,这是代码:
int viterbiDecode( int nBit, float *p_pm, int *p_sp, int *p_bStore, float *p_hd, int TB, int fc, int lc, int startTB) //initiate Viterbi Decoder function
{
int ipLut[4][4]; // intialization
ipLut[0][0] = 0; ipLut[0][1] = 0; ipLut[0][2] = 0; ipLut[0][3] = 0;
ipLut[1][0] = 0; ipLut[1][1] = 0; ipLut[1][2] = 0; ipLut[1][3] = 0;
ipLut[2][0] = 1; ipLut[2][1] = 1; ipLut[2][2] = 0; ipLut[2][3] = 0;
ipLut[3][0] = 0; ipLut[3][1] = 0; ipLut[3][2] = 1; ipLut[3][3] = 1;
int cs, ps,loopII;
float bm[2], pm_n[4];
int err, nErr;
int bHat;
int tt1, tt2;
int tbStCnt;
int decodeStCnt;
nErr = 0;
if (fc==1)
{
bm[0] = *p_pm+*p_hd;
*(p_sp+nBit*4+0) = 0;
pm_n[0] = bm[0];
bm[0] = *(p_pm+2)+*(p_hd+2);
*(p_sp+nBit*4+1) = 2;
pm_n[1] = bm[0];
bm[0] = *p_pm + *(p_hd+3);
*(p_sp+nBit*4+2) = 0;
pm_n[2] = bm[0];
bm[0] = *(p_pm+2)+ *(p_hd+1);
*(p_sp+nBit*4+3) = 2;
pm_n[3] = bm[0];
} else {
bm[0] = *p_pm + *p_hd;
bm[1] = *(p_pm+1) + *(p_hd+3);
*(p_sp+nBit*4+0) = (bm[0] < bm[1])? 0:1;
pm_n[0] = bm[(*(p_sp+nBit*4+0))];
bm[0] = *(p_pm+2) + *(p_hd+2);
bm[1] = *(p_pm+3) + *(p_hd+1);
*(p_sp+nBit*4+1) = (bm[0]<bm[1])? 2:3;
pm_n[1] = bm[(*(p_sp+nBit*4+1))-2];
bm[0] = *p_pm + *(p_hd+3);
bm[1] = *(p_pm+1) + *p_hd;
*(p_sp+nBit*4+2) = (bm[0]<bm[1])? 0:1;
pm_n[2] = bm[(*(p_sp+nBit*4+2))];
bm[0] = *(p_pm+2) + *(p_hd+1);
bm[1] = *(p_pm+3) + *(p_hd+2);
*(p_sp+nBit*4+3) = (bm[0]<bm[1])? 2:3;
pm_n[3] = bm[(*(p_sp+nBit*4+3))-2];
}
*p_pm = pm_n[0];
*(p_pm+1) = pm_n[1];
*(p_pm+2) = pm_n[2];
*(p_pm+3) = pm_n[3];
// trace back
if ( (startTB==1) || (lc ==1) )
{
tt1 = (pm_n[0] < pm_n[1])? 0: 1;
tt2 = (pm_n[2] < pm_n[3])? 2: 3;
if (pm_n[tt1] < pm_n[tt2]) {
cs = tt1;
}
else{
cs = tt2;
}
tbStCnt = nBit;
decodeStCnt = tbStCnt-TB;
if (lc ==1)
{
cs = 0;
decodeStCnt = tbStCnt-2;
}
for (loopII=tbStCnt;loopII>=0;loopII--)
{
ps = *(p_sp + 4*loopII + cs);
/* counting the errors */
if (loopII<decodeStCnt)
{
bHat = ipLut[cs][ps];
err = (bHat == *(p_bStore+loopII))? 0:1;
nErr = nErr+ err;
}
cs = ps;
}
}
return nErr;
}
答案 0 :(得分:3)
答案 1 :(得分:0)
提示:找到进入思考图的最短路径几乎就是'Dijkstra算法'。
当然,如果您不了解Dijkstra算法,您可以尝试使用维基百科。