我试图在numpy中对两个向量进行矩阵乘法,这会产生一个数组。
示例
In [108]: b = array([[1],[2],[3],[4]])
In [109]: a =array([1,2,3])
In [111]: b.shape
Out[111]: (4, 1)
In [112]: a.shape
Out[112]: (3,)
In [113]: b.dot(a)
ValueError: objects are not aligned
从形状可以看出,阵列a实际上并不是一个矩阵。问题是要像这样定义a
。
In [114]: a =array([[1,2,3]])
In [115]: a.shape
Out[115]: (1, 3)
In [116]: b.dot(a)
Out[116]:
array([[ 1, 2, 3],
[ 2, 4, 6],
[ 3, 6, 9],
[ 4, 8, 12]])
如何在将矢量作为矩阵的字段或列获取时获得相同的结果?
In [137]: mat = array([[ 1, 2, 3],
[ 2, 4, 6],
[ 3, 6, 9],
[ 4, 8, 12]])
In [138]: x = mat[:,0] #[1,2,3,4]
In [139]: y = mat[0,:] #[1,2,3]
In [140]: x.dot(y)
ValueError: objects are not aligned
答案 0 :(得分:5)
您正在计算两个向量的outer product。您可以使用函数numpy.outer
:
In [18]: a
Out[18]: array([1, 2, 3])
In [19]: b
Out[19]: array([10, 20, 30, 40])
In [20]: numpy.outer(b, a)
Out[20]:
array([[ 10, 20, 30],
[ 20, 40, 60],
[ 30, 60, 90],
[ 40, 80, 120]])
答案 1 :(得分:4)
使用2d数组而不是1d向量并使用*
...
In [8]: #your code from above
In [9]: y = mat[0:1,:]
In [10]: y
Out[10]: array([[1, 2, 3]])
In [11]: x = mat[:,0:1]
In [12]: x
Out[12]:
array([[1],
[2],
[3],
[4]])
In [13]: x*y
Out[13]:
array([[ 1, 2, 3],
[ 2, 4, 6],
[ 3, 6, 9],
[ 4, 8, 12]])
答案 2 :(得分:1)
这与基本示例中的类似。
x
和y
都不是矩阵,而是单维数组。
In [143]: x.shape
Out[143]: (4,)
In [144]: y.shape
Out[144]: (3,)
我们必须为它们添加第二个维度,即1。
In [171]: x = array([x]).transpose()
In [172]: x.shape
Out[172]: (4, 1)
In [173]: y = array([y])
In [174]: y.shape
Out[174]: (1, 3)
In [175]: x.dot(y)
Out[175]:
array([[ 1, 2, 3],
[ 2, 4, 6],
[ 3, 6, 9],
[ 4, 8, 12]])