我在mongodb的集合中有大量数据需要分析。如何将数据导入pandas?
我是熊猫和numpy的新手。
编辑: mongodb集合包含标记有日期和时间的传感器值。传感器值为float数据类型。
示例数据:
{
"_cls" : "SensorReport",
"_id" : ObjectId("515a963b78f6a035d9fa531b"),
"_types" : [
"SensorReport"
],
"Readings" : [
{
"a" : 0.958069536790466,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:26:35.297Z"),
"b" : 6.296118156595,
"_cls" : "Reading"
},
{
"a" : 0.95574014778624,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:27:09.963Z"),
"b" : 6.29651468650064,
"_cls" : "Reading"
},
{
"a" : 0.953648289182713,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:27:37.545Z"),
"b" : 7.29679823731148,
"_cls" : "Reading"
},
{
"a" : 0.955931884300997,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:28:21.369Z"),
"b" : 6.29642922525632,
"_cls" : "Reading"
},
{
"a" : 0.95821381,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:41:20.801Z"),
"b" : 7.28956613,
"_cls" : "Reading"
},
{
"a" : 4.95821335,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:41:36.931Z"),
"b" : 6.28956574,
"_cls" : "Reading"
},
{
"a" : 9.95821341,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:42:09.971Z"),
"b" : 0.28956488,
"_cls" : "Reading"
},
{
"a" : 1.95667927,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:43:55.463Z"),
"b" : 0.29115237,
"_cls" : "Reading"
}
],
"latestReportTime" : ISODate("2013-04-02T08:43:55.463Z"),
"sensorName" : "56847890-0",
"reportCount" : 8
}
答案 0 :(得分:101)
pymongo
可能会帮助你,以下是我正在使用的一些代码:
import pandas as pd
from pymongo import MongoClient
def _connect_mongo(host, port, username, password, db):
""" A util for making a connection to mongo """
if username and password:
mongo_uri = 'mongodb://%s:%s@%s:%s/%s' % (username, password, host, port, db)
conn = MongoClient(mongo_uri)
else:
conn = MongoClient(host, port)
return conn[db]
def read_mongo(db, collection, query={}, host='localhost', port=27017, username=None, password=None, no_id=True):
""" Read from Mongo and Store into DataFrame """
# Connect to MongoDB
db = _connect_mongo(host=host, port=port, username=username, password=password, db=db)
# Make a query to the specific DB and Collection
cursor = db[collection].find(query)
# Expand the cursor and construct the DataFrame
df = pd.DataFrame(list(cursor))
# Delete the _id
if no_id:
del df['_id']
return df
答案 1 :(得分:29)
您可以使用此代码将mongodb数据加载到pandas DataFrame。这个对我有用。希望也适合你。
import pymongo
import pandas as pd
from pymongo import MongoClient
client = MongoClient()
db = client.database_name
collection = db.collection_name
data = pd.DataFrame(list(collection.find()))
答案 2 :(得分:20)
Monary
就是这么做的,而且超级快。 (another link)
请参阅this cool post,其中包括快速教程和一些时间安排。
答案 3 :(得分:11)
根据PEP,简单比复杂更好:
import pandas as pd
df = pd.DataFrame.from_records(db.<database_name>.<collection_name>.find())
您可以像处理常规mongoDB数据库一样包含条件,甚至可以使用find_one()从数据库中获取一个元素,等等。
瞧!
答案 4 :(得分:10)
import pandas as pd
from odo import odo
data = odo('mongodb://localhost/db::collection', pd.DataFrame)
答案 5 :(得分:6)
为了有效地处理核外(不适合RAM)数据(即并行执行),你可以尝试Python Blaze ecosystem:Blaze / Dask / Odo。
Blaze(和Odo)具有处理MongoDB的开箱即用功能。
一些有用的文章开始:
这篇文章展示了Blaze堆栈可能带来的惊人之处:Analyzing 1.7 Billion Reddit Comments with Blaze and Impala(基本上,在几秒钟内查询975 Gb的Reddit注释)。
P.S。我并不隶属于这些技术。
答案 6 :(得分:3)
使用
pandas.DataFrame(list(...))
如果迭代器/生成器结果很大,将消耗大量内存
最好在最后生成小块和concat
def iterator2dataframes(iterator, chunk_size: int):
"""Turn an iterator into multiple small pandas.DataFrame
This is a balance between memory and efficiency
"""
records = []
frames = []
for i, record in enumerate(iterator):
records.append(record)
if i % chunk_size == chunk_size - 1:
frames.append(pd.DataFrame(records))
records = []
if records:
frames.append(pd.DataFrame(records))
return pd.concat(frames)
答案 7 :(得分:3)
我发现非常有用的另一个选项是:
from pandas.io.json import json_normalize
cursor = my_collection.find()
df = json_normalize(cursor)
通过这种方式,您可以免费展开嵌套的mongodb文档。
答案 8 :(得分:2)
http://docs.mongodb.org/manual/reference/mongoexport
导出到csv并使用read_csv
或JSON并使用DataFrame.from_records
答案 9 :(得分:1)
按照waitingkuo的这个好答案,我想补充使用chunksize与.read_sql()和.read_csv()一致的可能性。我通过避免逐个“迭代器”/“光标”的每个“记录”来放大Deu Leung的答案。 我将借用之前的 read_mongo 函数。
def read_mongo(db,
collection, query={},
host='localhost', port=27017,
username=None, password=None,
chunksize = 100, no_id=True):
""" Read from Mongo and Store into DataFrame """
# Connect to MongoDB
#db = _connect_mongo(host=host, port=port, username=username, password=password, db=db)
client = MongoClient(host=host, port=port)
# Make a query to the specific DB and Collection
db_aux = client[db]
# Some variables to create the chunks
skips_variable = range(0, db_aux[collection].find(query).count(), int(chunksize))
if len(skips_variable)<=1:
skips_variable = [0,len(skips_variable)]
# Iteration to create the dataframe in chunks.
for i in range(1,len(skips_variable)):
# Expand the cursor and construct the DataFrame
#df_aux =pd.DataFrame(list(cursor_aux[skips_variable[i-1]:skips_variable[i]]))
df_aux =pd.DataFrame(list(db_aux[collection].find(query)[skips_variable[i-1]:skips_variable[i]]))
if no_id:
del df_aux['_id']
# Concatenate the chunks into a unique df
if 'df' not in locals():
df = df_aux
else:
df = pd.concat([df, df_aux], ignore_index=True)
return df
答案 10 :(得分:1)
像Rafael Valero,waitingkuo和Deu Leung使用分页这样的方法:
def read_mongo(
# db,
collection, query=None,
# host='localhost', port=27017, username=None, password=None,
chunksize = 100, page_num=1, no_id=True):
# Connect to MongoDB
db = _connect_mongo(host=host, port=port, username=username, password=password, db=db)
# Calculate number of documents to skip
skips = chunksize * (page_num - 1)
# Sorry, this is in spanish
# https://www.toptal.com/python/c%C3%B3digo-buggy-python-los-10-errores-m%C3%A1s-comunes-que-cometen-los-desarrolladores-python/es
if not query:
query = {}
# Make a query to the specific DB and Collection
cursor = db[collection].find(query).skip(skips).limit(chunksize)
# Expand the cursor and construct the DataFrame
df = pd.DataFrame(list(cursor))
# Delete the _id
if no_id:
del df['_id']
return df
答案 11 :(得分:0)
您可以通过pdmongo分三行实现自己想要的目标:
import pdmongo as pdm
import pandas as pd
df = pdm.read_mongo("MyCollection", [], "mongodb://localhost:27017/mydb")
如果您的数据非常大,则可以通过过滤不需要的数据来进行汇总查询,然后将其映射到所需的列。
以下是将Readings.a
映射到列a
并按reportCount
列进行过滤的示例:
import pdmongo as pdm
import pandas as pd
df = pdm.read_mongo("MyCollection", [{'$match': {'reportCount': {'$gt': 6}}}, {'$unwind': '$Readings'}, {'$project': {'a': '$Readings.a'}}], "mongodb://localhost:27017/mydb")
read_mongo
接受与pymongo aggregate相同的参数
答案 12 :(得分:0)
您也可以使用 pymongoarrow -- 它是 MongoDB 提供的官方库,用于将 mongodb 数据导出到 Pandas、numPy、parquet 文件等。