我需要在php或javascript中的kml文件中找到地面叠加层的lat / lng中的角点。
即。对于我需要得到的具体例子:
<LatLonBox>
<north>60.406505416667</north>
<south>60.400570555556</south>
<east>5.3351572222222</east>
<west>5.3190577777778</west>
<rotation>3.7088732260919</rotation>
</LatLonBox>
到角坐标
SW: 60.400316388889;5.3194425
SE: 60.400824722222;5.3355405555556
NE: 60.406759444444;5.3347738888889
NW: 60.406251388889;5.3186730555556
我可以通过
获得另一种方式(至少约为PHP代码)$w=($nw_lng+$sw_lng)/2;
$e=($ne_lng+$se_lng)/2;
$n=($ne_lat+$nw_lat)/2;
$s=($se_lat+$sw_lat)/2;
$rot= rad2deg (atan ( ( $nw_lng - $sw_lng ) / ($sw_lat - $nw_lat ) / 2 ) );
应该很容易回来,但我已经花了好几个小时没有到达那里。有什么提示吗?
答案 0 :(得分:4)
您需要使用spherical trigonometry spherical geometry的一部分才能获得完全准确性。但是,由于你只处理一小部分球体,如果你记住一件事,欧几里得几何学将会有所作为。
随着纬度的增加,经度线越来越近。例如,在北极附近,纬度线几乎接触。因此,调整纬度差异,通过乘以cos(纬度)因子来减少它们。这将为您的应用提供足够的准确性。
$n = 60.406505416667;
$s = 60.400570555556;
$e = 5.3351572222222;
$w = 5.3190577777778;
$rotn = 3.7088732260919;
$a = ($e + $w) / 2.0;
$b = ($n + $s) / 2.0;
$squish = cos(deg2rad($b));
$x = $squish * ($e - $w) / 2.0;
$y = ($n - $s) / 2.0;
$ne = array(
$a + ($x * cos(deg2rad($rotn)) - $y * sin(deg2rad($rotn))) /$squish,
$b + $x * sin(deg2rad($rotn)) + $y *cos(deg2rad($rotn))
);
$nw = array(
$a - ($x * cos(deg2rad($rotn)) + $y * sin(deg2rad($rotn))) /$squish,
$b - $x * sin(deg2rad($rotn)) + $y *cos(deg2rad($rotn))
);
$sw = array(
$a - ($x * cos(deg2rad($rotn)) - $y * sin(deg2rad($rotn))) /$squish,
$b - $x * sin(deg2rad($rotn)) - $y *cos(deg2rad($rotn))
);
$se = array(
$a + ($x * cos(deg2rad($rotn)) + $y * sin(deg2rad($rotn))) /$squish,
$b + $x * sin(deg2rad($rotn)) - $y *cos(deg2rad($rotn))
);
print_r(array(
'sw'=>$sw,
'se'=>$se,
'ne'=>$ne,
'nw'=>$nw,
));
我的$squish
变量是我提到的cos(lat)。对于水平长度的相对部分存在去压缩。正弦表如下所示:
NE: (a + x cos A - y sin A, b + x sin A + y cos A)
NW: (a - x cos A - y sin A, b - x sin A + y cos A)
SW: (a - x cos A + y sin A, b - x sin A - y cos A)
SE: (a + x cos A + y sin A, b + x sin A - y cos A)
也许tttppp可以解释与tttppp表的差异。