如何在Lucene中实现tf-idf和余弦相似度?我正在使用Lucene 4.2。我创建的程序不使用tf-idf和Cosine相似,它只使用TopScoreDocCollector。
import com.mysql.jdbc.Statement;
import java.io.BufferedReader;
import java.io.File;
import java.io.InputStreamReader;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.util.Version;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.IndexWriter;
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.ResultSet;
import org.apache.lucene.analysis.id.IndonesianAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.index.*;
import org.apache.lucene.queryparser.classic.ParseException;
import org.apache.lucene.queryparser.classic.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopScoreDocCollector;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.store.RAMDirectory;
public class IndexMysqlDBStemming {
public static void main(String[] args) throws Exception {
// 1. Create Index From Database
Class.forName("com.mysql.jdbc.Driver").newInstance();
Connection connection = DriverManager.getConnection("jdbc:mysql://localhost/db_haiquran", "root", "");
IndonesianAnalyzer analyzer = new IndonesianAnalyzer(Version.LUCENE_42);
//StandardAnalyzer analyzer = new StandardAnalyzer(Version.LUCENE_42);
QueryParser parser = new QueryParser(Version.LUCENE_42, "result", analyzer);
Directory INDEX_DIR = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_42, analyzer);
IndexWriter writer = new IndexWriter(INDEX_DIR, config);
String query = "SELECT * FROM ayat";
java.sql.Statement statement = connection.createStatement();
ResultSet result = statement.executeQuery(query);
while (result.next()) {
Document document = new Document();
document.add(new Field("NO_INDEX_AYAT", result.getString("NO_INDEX_AYAT"), Field.Store.YES, Field.Index.NOT_ANALYZED));
document.add(new Field("NO_SURAT", result.getString("NO_SURAT"), Field.Store.YES, Field.Index.NOT_ANALYZED));
document.add(new Field("NO_AYAT", result.getString("NO_AYAT"), Field.Store.YES, Field.Index.NOT_ANALYZED));
document.add(new Field("TEXT_INDO", result.getString("TEXT_INDO"), Field.Store.YES, Field.Index.ANALYZED));
document.add(new Field("TEXT_ARAB", result.getString("TEXT_ARAB"), Field.Store.YES, Field.Index.NOT_ANALYZED));
writer.updateDocument(new Term("NO_INDEX_AYAT", result.getString("NO_INDEX_AYAT")), document);
}
writer.close();
// 2. Query
System.out.println("Enter your search keyword in here : ");
BufferedReader bufferRead = new BufferedReader(new InputStreamReader(System.in));
String s = bufferRead.readLine();
String querystr = args.length > 0 ? args[0] :s;
try {
System.out.println(parser.parse(querystr)+"\n"); //amenit
System.out.println();
} catch (ParseException ex) {
// Exception
}
Query q = new QueryParser(Version.LUCENE_42, "TEXT_INDO", analyzer).parse(querystr);
// 3. Search
int hitsPerPage = 10;
IndexReader reader = DirectoryReader.open(INDEX_DIR);
IndexSearcher searcher = new IndexSearcher(reader);
TopScoreDocCollector collector = TopScoreDocCollector.create(hitsPerPage, true);
searcher.search(q, collector);
ScoreDoc[] hits = collector.topDocs().scoreDocs;
// 4. Display results
System.out.println("Found : " + hits.length + " hits.");
System.out.println("No" + " ID " + "\t" + " Surat " + "\t" + " No Ayat " + "\t" + " Terjemahan Ayat " + "\t" + " Teks Arab ");
for (int i=0; i<hits.length; i++) {
int docID = hits[i].doc;
Document d = searcher.doc(docID);
System.out.println((i+1) + ". " + d.get("NO_INDEX_AYAT") + "\t" + d.get("NO_SURAT") + "\t" + d.get("NO_AYAT")+
"\t" + d.get("TEXT_INDO") + "\t" + d.get("TEXT_ARAB"));
}
reader.close();
}
}
如何使用tf-idf和余弦相似度显示计算结果?
答案 0 :(得分:4)
除非有我遗失的东西,否则你已经完成了。做得好!
默认情况下使用的相似度算法是DefaultSimilarity,但您可以在其基类TFIDFSimilarity中找到大多数文档(和逻辑)。
TFIDFSimilarity确实是TF-IDF和余弦相似度评分模型的实现。