假设我有一个像这样的变量向量:
>variable
[1] "A1" "A1" "A1" "A1" "A2" "A2" "A2" "A2" "B1" "B1" "B1" "B1"
我希望将其转换为这样的数据框:
treatment time
1 A 1
2 A 1
3 A 1
4 A 1
5 A 2
6 A 2
7 A 2
8 A 2
9 B 1
10 B 1
11 B 1
12 B 1
为此,我使用了reshape2的colsplit功能。它需要一个模式来分割字符串,但我很快意识到没有明显的模式来分割两个字符而没有任何空格。 我试过“”并得到以下结果:
> colsplit(trialm$variable,"",names=c("treatment","time"))
treatment time
1 NA A1
2 NA A1
3 NA A1
4 NA A1
5 NA A2
6 NA A2
7 NA A2
8 NA A2
9 NA B1
10 NA B1
11 NA B1
12 NA B1
我也尝试过lookbehind或lookahead正则表达式:
>colsplit(trialm$variable,"(?<=\\w)",names=c("treatment","time"))
Error in gregexpr("(?<=\\w)", c("A1", "A1", "A1", "A1", "A2", "A2", "A2", :
invalid regular expression '(?<=\w)', reason 'Invalid regexp'
但它给了我上面的错误。我该如何解决这个问题?
答案 0 :(得分:10)
沿着这条线的某个地方,“stringr”包(使用“reshape2”导入并负责与colsplit
进行拆分)开始使用“stringi”来实现其几个功能。由于这一点,一些行为似乎已经改变了。
使用当前的“reshape2”(以及当前的“stringr”包),colsplit
的工作方式与您对代码的预期方式相同:
packageVersion("reshape2")
## [1] ‘1.4.3’
packageVersion("stringr")
## [1] ‘1.2.0’
colsplit(variable, "", names = c("treatment", "time"))
## treatment time
## 1 A 1
## 2 A 1
## 3 A 1
## 4 A 1
## 5 A 2
## 6 A 2
## 7 A 2
## 8 A 2
## 9 B 1
## 10 B 1
## 11 B 1
## 12 B 1
如果可以在“变量”中检测到模式,但没有可以使用的干净分割字符,则添加一个:)
library(reshape2)
variable <- c("A1", "A1", "A1", "A1", "A2", "A2",
"A2", "A2", "B1", "B1", "B1", "B1")
## Here, we add a "." between upper case letters and numbers
colsplit(gsub("([A-Z])([0-9])", "\\1\\.\\2", variable),
"\\.", c("Treatment", "Time"))
# Treatment Time
# 1 A 1
# 2 A 1
# 3 A 1
# 4 A 1
# 5 A 2
# ::::: snip :::: #
# 11 B 1
# 12 B 1
我的“splitstackshape”包有一个名为NoSep
的单用途非导出辅助函数,可以用于此:
splitstackshape:::NoSep(variable)
## .var .time_1
## 1 A 1
## 2 A 1
## 3 A 1
## 4 A 1
## 5 A 2
## ::: snip :::: #
## 11 B 1
## 12 B 1
“tidyverse”(特别是“tidyr”包)有几个方便的功能,可以将值分成不同的列:separate
和extract
。 separate
有already been demonstrated by jazzuro,但解决方案对此特定问题非常具体。此外,它通常使用分隔符更好。 extract
希望您指定包含要捕获的组的正则表达式:
library(tidyverse)
data.frame(variable) %>%
extract(variable, into = c("Treatment", "Time"), regex = "([A-Z]+)([0-9]+)")
# Treatment Time
# 1 A 1
# 2 A 1
# 3 A 1
# 4 A 1
# 5 A 2
# ::::: snip :::: #
# 11 B 1
# 12 B 1
答案 1 :(得分:7)
substr
是另一种方法。
> variable <- c(rep("A1", 4), rep("A2", 4), rep("B1", 4))
> data.frame(treatment=substr(variable, 1,1), time=as.numeric(substr(variable,2,2)))
treatmen time
1 A 1
2 A 1
3 A 1
4 A 1
5 A 2
6 A 2
7 A 2
8 A 2
9 B 1
10 B 1
11 B 1
12 B 1
答案 2 :(得分:6)
如果您使用向量variable
创建数据框,则可以立即使用separate()
包中的tidyr
。
mydf <- data.frame(variable = c(rep("A1", 4), rep("A2", 4), rep("B1", 4)),
stringsAsFactors = FALSE)
separate(mydf, variable, c("treatement", "time"), sep = 1)
# treatement time
#1 A 1
#2 A 1
#3 A 1
#4 A 1
#5 A 2
#6 A 2
#7 A 2
#8 A 2
#9 B 1
#10 B 1
#11 B 1
#12 B 1
答案 3 :(得分:5)
您可以使用substr
拆分它:
e.g。
df <- data.frame(treatment = substr(variable, start = 1, stop = 1),
time = substr(variable, start = 2, stop = 2) )
答案 4 :(得分:4)
使用正则表达式的另一种解决方案
require(stringr)
variable <- c(paste0("A", c(rep(1, 4), rep(2, 3))),
paste0("B", rep(1, 4))
)
data.frame(
treatment = str_extract(variable, "[[:alpha:]]"),
time = as.numeric(str_extract(variable, "[[:digit:]]"))
)
## treatment time
## 1 A 1
## 2 A 1
## 3 A 1
## 4 A 1
## 5 A 2
## 6 A 2
## 7 A 2
## 8 B 1
## 9 B 1
## 10 B 1
## 11 B 1
答案 5 :(得分:4)
tstrsplit()
中引入了新功能data.table v1.9.5
。 t
代表转置。它是使用strsplit()
拆分字符向量然后转置的结果。
# dummy data
library(data.table)
dt <- data.table(var = c(rep("A1", 4), rep("A2", 4), rep("B1", 4)))
使用tstrsplit()
:
dt[, tstrsplit(var, "")]
V1 V2
1: A 1
2: A 1
3: A 1
4: A 1
5: A 2
6: A 2
7: A 2
8: A 2
9: B 1
10: B 1
11: B 1
12: B 1
是的,这很容易。 : - )
答案 6 :(得分:3)
您可以使用substring()创建向量,然后使用data.frame函数将它们连接起来。
yyy<-c("A1", "A1", "A1", "A1", "A2", "A2", "A2", "A2", "B1", "B1", "B1", "B1")
treatment<-substring(yyy, 1,1)
time<-as.numeric(substring(yyy,2,2))
data.frame(treatment,time)
答案 7 :(得分:2)
您可以使用strsplit
df <- t(data.frame(strsplit(variable, "")))
rownames(df) <- NULL
colnames(df) <- c("treatment" , "time" )
df
treatment time
[1,] "A" "1"
[2,] "A" "1"
[3,] "A" "1"
[4,] "A" "1"
[5,] "A" "2"
[6,] "A" "2"
[7,] "A" "2"
[8,] "A" "2"
[9,] "B" "1"
[10,] "B" "1"
[11,] "B" "1"
[12,] "B" "1"
您可以使用t
而不是rbind
,然后强制使用data.frame
,如下所示:
setNames(as.data.frame(do.call(rbind, strsplit(variable, ""))),
c("Treatment", "Time"))
# Treatment Time
# 1 A 1
# 2 A 1
# 3 A 1
# 4 A 1
# 5 A 2
# 6 A 2
# 7 A 2
# 8 B 1
# 9 B 1
# 10 B 1
# 11 B 1
答案 8 :(得分:1)
基于@Justin的评论我建议(使用v <- c("A1", "B2")
):
> t(sapply(strsplit(v, ''), '[', c(1, 2)))
[,1] [,2]
[1,] "A" "1"
[2,] "B" "2"
'''后面的向量选择分割向量中的项目。所以我只拆分一次,保留两个项目。如果你想保留每件物品,也许这更容易:
t(sapply(strsplit(v, ''), identity))