SICP练习1.3请求评论

时间:2008-10-02 10:23:31

标签: scheme sicp

我正在尝试通过SICP学习计划。练习1.3内容如下:定义一个过程,该过程将三个数字作为参数,并返回两个较大数字的平方和。请评论我如何改进我的解决方案。

(define (big x y)
    (if (> x y) x y))

(define (p a b c)
    (cond ((> a b) (+ (square a) (square (big b c))))
          (else (+ (square b) (square (big a c))))))

17 个答案:

答案 0 :(得分:28)

只使用本书那一点提出的概念,我会这样做:

(define (square x) (* x x))

(define (sum-of-squares x y) (+ (square x) (square y)))

(define (min x y) (if (< x y) x y))

(define (max x y) (if (> x y) x y))

(define (sum-squares-2-biggest x y z)
  (sum-of-squares (max x y) (max z (min x y))))

答案 1 :(得分:13)

big被称为max。当它存在时使用标准库功能。

我的方法不同。我只是添加所有三个的正方形,然后减去最小的正方形,而不是大量的测试。

(define (exercise1.3 a b c)
  (let ((smallest (min a b c))
        (square (lambda (x) (* x x))))
    (+ (square a) (square b) (square c) (- (square smallest)))))

当然,无论您喜欢这种方法,还是一堆if测试,都取决于您。


使用SRFI 95替代实施:

(define (exercise1.3 . args)
  (let ((sorted (sort! args >))
        (square (lambda (x) (* x x))))
    (+ (square (car sorted)) (square (cadr sorted)))))

如上所述,但作为一个单行(感谢synx @ freenode #scheme);还需要SRFI 1SRFI 26

(define (exercise1.3 . args)
  (apply + (map! (cut expt <> 2) (take! (sort! args >) 2))))

答案 2 :(得分:10)

我使用以下代码完成了该操作,该代码使用内置的minmaxsquare过程。它们很简单,只能使用到目前为止在文本中引入的内容来实现。

(define (sum-of-highest-squares x y z)
   (+ (square (max x y))
      (square (max (min x y) z))))

答案 3 :(得分:9)

这样的事情怎么样?

(define (p a b c)
  (if (> a b)
      (if (> b c)
          (+ (square a) (square b))
          (+ (square a) (square c)))
      (if (> a c)
          (+ (square a) (square b))
          (+ (square b) (square c)))))

答案 4 :(得分:4)

(define (f a b c) 
  (if (= a (min a b c)) 
      (+ (* b b) (* c c)) 
      (f b c a)))

答案 5 :(得分:4)

(define (sum-sqr x y)
(+ (square x) (square y)))

(define (sum-squares-2-of-3 x y z)
    (cond ((and (<= x y) (<= x z)) (sum-sqr y z))
             ((and (<= y x) (<= y z)) (sum-sqr x z))
             ((and (<= z x) (<= z y)) (sum-sqr x y))))

答案 6 :(得分:4)

仅使用在文本的那一点介绍的概念,我认为这是非常重要的,这是一个不同的解决方案:

(define (smallest-of-three a b c)
        (if (< a b)
            (if (< a c) a c)
            (if (< b c) b c)))

(define (square a)
        (* a a))

(define (sum-of-squares-largest a b c) 
        (+ (square a)
           (square b)
           (square c)
           (- (square (smallest-of-three a b c)))))

答案 7 :(得分:4)

对我来说没问题,你想改进什么具体的事情吗?

您可以执行以下操作:

(define (max2 . l)
  (lambda ()
    (let ((a (apply max l)))
      (values a (apply max (remv a l))))))

(define (q a b c)
  (call-with-values (max2 a b c)
    (lambda (a b)
      (+ (* a a) (* b b)))))

(define (skip-min . l)
  (lambda ()
    (apply values (remv (apply min l) l))))

(define (p a b c)
  (call-with-values (skip-min a b c)
    (lambda (a b)
      (+ (* a a) (* b b)))))

这个(proc p)可以很容易地转换为处理任意数量的参数。

答案 8 :(得分:3)

Scott Hoffman和一些irc帮助我纠正了我的错误代码,这里是

(define (p a b c)
    (cond ((> a b)
        (cond ((> b c)
            (+ (square a) (square b)))
            (else (+ (square a) (square c)))))
        (else
            (cond ((> a c)
                (+ (square b) (square a))))
             (+ (square b) (square c)))))

答案 9 :(得分:2)

这是另一种方法:

#!/usr/bin/env mzscheme
#lang scheme/load

(module ex-1.3 scheme/base
  (define (ex-1.3 a b c)
    (let* ((square (lambda (x) (* x x)))
           (p (lambda (a b c) (+ (square a) (square (if (> b c) b c))))))
      (if (> a b) (p a b c) (p b a c))))

  (require scheme/contract)
  (provide/contract [ex-1.3 (-> number? number? number? number?)]))

;; tests
(module ex-1.3/test scheme/base
  (require (planet "test.ss" ("schematics" "schemeunit.plt" 2))
           (planet "text-ui.ss" ("schematics" "schemeunit.plt" 2)))
  (require 'ex-1.3)

  (test/text-ui
   (test-suite
    "ex-1.3"
    (test-equal? "1 2 3" (ex-1.3 1 2 3) 13)
    (test-equal? "2 1 3" (ex-1.3 2 1 3) 13)
    (test-equal? "2 1. 3.5" (ex-1.3 2 1. 3.5) 16.25)
    (test-equal? "-2 -10. 3.5" (ex-1.3 -2 -10. 3.5) 16.25)
    (test-exn "2+1i 0 0" exn:fail:contract? (lambda () (ex-1.3 2+1i 0 0)))
    (test-equal? "all equal" (ex-1.3 3 3 3) 18))))

(require 'ex-1.3/test)

示例:

$ mzscheme ex-1.3.ss
6 success(es) 0 failure(s) 0 error(s) 6 test(s) run
0

答案 10 :(得分:2)

您还可以对列表进行排序,并添加排序列表的第一个和第二个元素的方块:

(require (lib "list.ss")) ;; I use PLT Scheme

(define (exercise-1-3 a b c)
  (let* [(sorted-list (sort (list a b c) >))
         (x (first sorted-list))
         (y (second sorted-list))]
    (+ (* x x) (* y y))))

答案 11 :(得分:2)

很高兴看到其他人如何解决了这个问题。这是我的解决方案:

(define (isGreater? x y z)
(if (and (> x z) (> y z))
(+ (square x) (square y))
0))

(define (sumLarger x y z)
(if (= (isGreater? x y z) 0)   
(sumLarger y z x)
(isGreater? x y z)))

我通过迭代解决了问题,但我更喜欢ashitaka的解决方案和[+(square(max xy)z)(square(max(min xy)z)))解决方案更好,因为在我的版本中,如果z是最小数, 更伟大?被两次调用,创建了不必要的缓慢而and回的过程。

答案 12 :(得分:1)

(define (sum a b) (+ a b))
(define (square a) (* a a))
(define (greater a b ) 
  ( if (< a b) b a))
(define (smaller a b ) 
  ( if (< a b) a b))
(define (sumOfSquare a b)
    (sum (square a) (square b)))
(define (sumOfSquareOfGreaterNumbers a b c)
  (sumOfSquare (greater a b) (greater (smaller a b) c)))

答案 13 :(得分:0)

我已经去了:

(define (procedure a b c)
    (let ((y (sort (list a b c) >)) (square (lambda (x) (* x x))))
        (+ (square (first y)) (square(second y)))))

答案 14 :(得分:0)

;exercise 1.3
(define (sum-square-of-max a b c)
  (+ (if (> a b) (* a a) (* b b))
     (if (> b c) (* b b) (* c c))))

答案 15 :(得分:0)

我认为这是最小巧,最有效的方式:

(define (square-sum-larger a b c)
 (+ 
  (square (max a b))
  (square (max (min a b) c))))

答案 16 :(得分:0)

以下是我提出的解决方案。当代码被分解为小函数时,我发现更容易推理出解决方案。

            ; Exercise 1.3
(define (sum-square-largest a b c)
  (+ (square (greatest a b))
     (square (greatest (least a b) c))))

(define (greatest a b)
  (cond (( > a b) a)
    (( < a b) b)))

(define (least a b)
  (cond ((> a b) b)
    ((< a b) a)))

(define (square a)
  (* a a))